Please read this notice before using the TAIYO YUDEN products.

Product Information in this Catalog

Product information in this catalog is as of March 2023. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment for consumer (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets, or the equipment approved separately by TAIYO YUDEN.

TAIYO YUDEN has the product series intended for use in the following equipment. Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

Application	Product Series		Quality Grade*3
Application	Equipment ⁺¹	Category (Part Number Code *2)	
Automotive	Automotive Electronic Equipment (POWERTRAIN, SAFETY)	A	1
Automotive	Automotive Electronic Equipment (BODY & CHASSIS, INFOTAINMENT)	С	2
Industrial	Telecommunications Infrastructure and Industrial Equipment	В	2
Medical	Medical Devices classified as GHTF Class C (Japan Class III)	Μ	2
Medical	Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)	L	3
Consumer	General Electronic Equipment	S	3
	Only for Mobile Devices *4	E	4

*Notes:1. Based on the general specifications required for electronic components for such equipment, which are recognized by TAIYO YUDEN, the use of each product series for the equipment is recommended. Please be sure to contact TAIYO YUDEN before using our products for equipment other than those covered by the product series.

2. On each of our part number, the 2nd code from the left is a code indicating the "Category" as shown in the above table. For details, please check the explanatory materials regarding the part numbering system of each of our products.

3. Each product series is assigned a "Quality Grade" from 1 to 4 in order of higher quality. Please do not incorporate a product into any equipment with a higher Quality Grade than the Quality Grade of such product without the prior written consent of TAIYO YUDEN.

4. The applications covered by this product series are limited to mobile devices (smartphone, tablet PC, smartwatch, handheld game console, etc.) among general electronic equipment for consumer. The design, specifications and operating environment, etc. differ from those of the product series for "General Electronic Equipment" (Category: S), so please check the individual product specification sheets for details. The product series for "General Electronic Equipment" (Category: S) can also be used for mobile devices.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

(1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)

(2) Traffic signal equipment

(3) Disaster prevention equipment, crime prevention equipment

- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, data-processing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.)

- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2
- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)

(5) Undersea equipment (submarine repeating equipment, etc.)

(6) Military equipment

(7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

- *Notes:1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
 - 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves conforming to the product specifications specified in the individual product specification sheets, and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement, provided, however, that our products shall be used for general-purpose and standard use in the equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

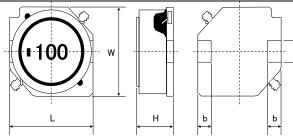
Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

Industrial Application Guide

We have the product series (the 2nd code from the left side of the part number is "B") intended for use in telecommunications infrastructure and industrial equipment (its typical examples are as shown in the table below). Therefore, when using our products for these equipment, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding product series. Should you have any questions on this matter, please contact us.

Product Series (The 2nd Code from the Left Side of the Part Number)	Category	Telecommunications Infrastructure and Industrial Equipment (Typical Example)
	Telecommunications Infrastructure	 Base Station Optical Transceiver Router/Switch (Carrier-Grade) UPS (Uninterruptible Power Supply), etc.
	Factory Automation	 PLC (Programmable Logic Controller) Servomotor/Servo Driver Industry Robot, etc.
В	Measurement	 Gas Meter Water Meter Flow Meter Pressure Gauge Meter Magnetometer Thermometer, etc.
	Electric Power Apparatus	 Power Conditioner (Solar Power System) Smart Meter GFCI (Ground Fault Circuit Interrupter) Electric Vehicle Charging Station, etc.


Wire-wound Ferrite Power Inductors LBRN series for Telecommunications Infrastructure and Industrial Equipment

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

																											REFLO
PART	NUMB	ER										:	*Oper	atin	g Te	emp.	.: -	40~1	25°C (I	nclud	ing se	lf-ge	nerat	ed h	eat)		
LB	8 R	Ν	J 2		0 1 3	4	4 (4)	5 (5			1 (1 3)	N		9										
(1)Series	;																										
(1)(2)	ode (3)(4)																										
LB	RN	Wir	re-wou	ind Fei	rrite Po	wer I	nduct	or for	Telec	omm	unica	tions	Infras	truc	ture	e an	d Indı	ustria	l Equi	pmer	nt						
(1) Prod	uct Gro	an											(3)]	vpe													
Code													_	de													
L				I	Inducto	rs							F	२		Fe	errite	Wire	-woun	ıd (D	rum-s	sleev	ve, p	edes	stal ty	pe)	
(0) 0-+-													(4) [haract										
(2) Cate Code	gory	Reco	mmen	ded er	uipmen	+		Quali	ty Gra	de				de	ures	s, U	harac	terist	ics								
	Tele				nfrastru			Quan	-	uc			1						Stan	dard	Powe	er cł	noke				_
В	1 OIC				uipment		·		2					-													
	re ode J		B	ottom	Fe	<mark>ature</mark> de (P		al typ	e)				6P	Сс	nging ode	2					Pac	kagi ping	-				
																						<u>-</u> -	>				
③Dimer		_×W)											(7)N			nduo	ctanc	e									_
	ode D1			Dim	ensions	(L × × 10		im]							ode mple	-)			N	omin	al ind	lucta	ance	[µH]]		
	25					× 10							(mpie R0	9)						1.0					
	20				12.0										00							10					
④Dimen	isions (H	H)												10	01						1	00					
Co	de			Di	mensio	ns(H) [mm]					×R	=De	ecim	nal p	point										
	5					4.5							<u> </u>														
	5	_				5.5							(8)In			e to	oleran	ce									_
	5	_				6.5									ode M					Indu	ctanc	;e to ±20		nce			
/	5					7.5									N							± 30					
⑤Opera	ting ten	nperat	ture												•							<u> </u>	. /0				
Co	de			Opera	ating te	mper	ature	[°C]					(9In	tern	al co	ode											
(3				-40	~+12	25																				

STANDARD EXTERNAL DIMENSIONS / MINIMUM QUANTITY

Туре	L	W	Н	а	b	Minimum quantity [pcs]
10145	10.1 ± 0.3	10.1 ± 0.3	4.5 ± 0.35	2.8±0.1	2.0 ± 0.15	2000
10145	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.177±0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000
10155	10.1 ± 0.3	10.1 ± 0.3	5.5 ± 0.35	2.8±0.1	2.0 ± 0.15	2000
10133	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.217±0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000
10165	10.1 ± 0.3	10.1 ± 0.3	6.5 ± 0.35	2.8±0.1	2.0 ± 0.15	2000
10105	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.256 ± 0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000
12555	12.5 ± 0.3	12.5 ± 0.3	5.5 ± 0.35	3.0 ± 0.1	2.0 ± 0.15	2000
12000	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.217 ± 0.014)	(0.118 ± 0.004)	(0.079 ± 0.006)	2000
12565	12.5 ± 0.3	12.5 ± 0.3	6.5 ± 0.35	3.0 ± 0.1	2.0 ± 0.15	2000
12303	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.256 ± 0.014)	(0.118 ± 0.004)	(0.079 ± 0.006)	2000
12575	12.5±0.3	12.5±0.3	7.5 ± 0.35	3.0 ± 0.1	2.0 ± 0.15	2000
120/0	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.295 ± 0.014)	(0.118±0.004)	(0.079 ± 0.006)	2000
						Unit:mm(inch)

а

Recommended Land Patterns

Surface Mounting

Mounting and soldering conditions should be checked beforehand.
 Applicable soldering process to these products is reflow soldering only.

	 ←───		 ↓		¢	
A	`	В		A		

Туре	Α	В	С
10145	2.5	5.6	3.2
10155	2.5	5.6	3.2
10165	2.5	5.6	3.2
12555	2.5	8.6	3.2
12565	2.5	8.6	3.2
12575	2.5	8.6	3.2
			Unit : mr

PART NUMBER

• All the Wire-wound Ferrite Power Inductors of the catalog lineup are RoHS compliant.

Notes)

• The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.

The products are for Telecommunications infrastructure and Industrial equipment.
 Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,

and please review and approve the product specifications before ordering.

10145 type

	Oldaratan	New York Protocol and		DO Desistence	Rated curre	nt ※)[A]	Trequency [KT2] 100
New part number	Old part number (for reference)	Nominal inductance [μ H]	Inductance tolerance	DC Resistance [Ω](±20%)	Saturation current Idc1	Temperature rise current Idc2	
LBRNJ10145GL1R0NN	NS 10145T 1R0NNV8	1.0	±30%	0.0049	12.54	8.90	100
LBRNJ10145GL1R5NN	NS 10145T 1R5NNV8	1.5	±30%	0.0060	10.34	7.99	100
LBRNJ10145GL2R2NN	NS 10145T 2R2NNV8	2.2	±30%	0.0085	8.91	6.64	100
LBRNJ10145GL3R3NN	NS 10145T 3R3NNV8	3.3	±30%	0.0100	7.33	6.10	100
LBRNJ10145GL4R7NN	NS 10145T 4R7NNV8	4.7	±30%	0.0144	6.69	5.03	100
LBRNJ10145GL5R6NN	NS 10145T 5R6NNV8	5.6	±30%	0.0181	5.85	4.45	100
LBRNJ10145GL6R8NN	NS 10145T 6R8NNV8	6.8	±30%	0.0230	5.05	4.22	100
LBRNJ10145GL100MN	NS 10145T 100MNV8	10	±20%	0.0270	4.22	3.10	100
LBRNJ10145GL150MN	NS 10145T 150MNV8	15	±20%	0.0381	3.44	3.00	100
LBRNJ10145GL220MN	NS 10145T 220MNV8	22	±20%	0.0570	2.87	2.30	100
LBRNJ10145GL330MN	NS 10145T 330MNV8	33	±20%	0.0880	2.36	1.90	100
LBRNJ10145GL470MN	NS 10145T 470MNV8	47	±20%	0.130	2.00	1.50	100
LBRNJ10145GL680MN	NS 10145T 680MNV8	68	±20%	0.150	1.66	1.45	100
LBRNJ10145GL101MN	NS 10145T 101MNV8	100	±20%	0.230	1.40	1.10	100
LBRNJ10145GL151MN	NS 10145T 151MNV8	150	±20%	0.350	1.11	0.86	100
LBRNJ10145GL221MN	NS 10145T 221MNV8	220	±20%	0.510	0.91	0.78	100
LBRNJ10145GL331MN	NS 10145T 331MNV8	330	±20%	0.700	0.71	0.64	100
LBRNJ10145GL471MN	NS 10145T 471MNV8	470	±20%	1.03	0.61	0.52	100
LBRNJ10145GL681MN	NS 10145T 681MNV8	680	±20%	1.57	0.50	0.42	100
LBRNJ10145GL102MN	NS 10145T 102MNV8	1000	±20%	2.58	0.41	0.32	100
LBRNJ10145GL152MN	NS 10145T 152MNV8	1500	±20%	3.70	0.36	0.27	100

10155 type

	Oldersteinschatt	Nominal inductance		DC Resistance	Rated curren	nt ※)[A]	Manager
New part number	Old part number (for reference)	[μ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[kHz]
LBRNJ10155GL1R5NN	NS 10155T 1R5NNV8	1.5	±30%	0.0060	11.90	8.39	100
LBRNJ10155GL2R2NN	NS 10155T 2R2NNV8	2.2	±30%	0.0072	10.00	7.61	100
LBRNJ10155GL3R3NN	NS 10155T 3R3NNV8	3.3	±30%	0.0097	8.50	6.49	100
LBRNJ10155GL4R7NN	NS 10155T 4R7NNV8	4.7	±30%	0.0112	7.40	6.01	100
LBRNJ10155GL6R8NN	NS 10155T 6R8NNV8	6.8	±30%	0.0159	6.00	4.98	100
LBRNJ10155GL100MN	NS 10155T 100MNV8	10	±20%	0.0200	4.49	4.40	100
LBRNJ10155GL150MN	NS 10155T 150MNV8	15	±20%	0.0310	4.03	3.40	100
LBRNJ10155GL220MN	NS 10155T 220MNV8	22	±20%	0.0430	3.37	2.80	100

10165 type

	Oldanstanskas	New local fashes to see		DC Resistance	Rated curre	nt 💥) [A]	Manager
New part number	Old part number (for reference)	Nominal inductance [µ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[kHz]
LBRNJ10165GL1R5NN	NS 10165T 1R5NNV8	1.5	$\pm 30\%$	0.0062	13.60	8.04	100
LBRNJ10165GL2R2NN	NS 10165T 2R2NNV8	2.2	$\pm 30\%$	0.0074	10.80	7.32	100
LBRNJ10165GL3R3NN	NS 10165T 3R3NNV8	3.3	±30%	0.0086	9.30	6.76	100
LBRNJ10165GL4R7NN	NS 10165T 4R7NNV8	4.7	±30%	0.0112	7.70	5.88	100
LBRNJ10165GL6R8NN	NS 10165T 6R8NNV8	6.8	±30%	0.0140	6.00	5.22	100
LBRNJ10165GL100MN	NS 10165T 100MNV8	10	±20%	0.0174	5.20	4.66	100
LBRNJ10165GL150MN	NS 10165T 150MNV8	15	±20%	0.0280	3.60	3.84	100
LBRNJ10165GL220MN	NS 10165T 220MNV8	22	±20%	0.0350	3.10	3.41	100

*) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

*) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)

*) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

PART NUMBER

🛑 12555 type							
	Oldanstanskas	Nominal inductance		DC Resistance	Rated curre	nt ※)[A]	Inequency (KH2) 100
New part number	Old part number (for reference)	[μ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	
LBRNJ12555GL6R0NN	NS 12555T 6R0NN 8	6.0	±30%	0.0140	5.01	5.60	100
LBRNJ12555GL100MN	NS 12555T 100MN 8	10	±20%	0.0175	4.73	5.04	100
LBRNJ12555GL150MN	NS 12555T 150MN 8	15	±20%	0.0233	3.89	4.18	100
LBRNJ12555GL220MN	NS 12555T 220MN 8	22	±20%	0.0297	3.20	3.81	100
LBRNJ12555GL330MN	NS 12555T 330MN 8	33	±20%	0.0415	2.64	3.16	100
LBRNJ12555GL470MN	NS 12555T 470MN 8	47	±20%	0.0618	2.23	2.70	100
LBRNJ12555GL680MN	NS 12555T 680MN 8	68	±20%	0.0832	1.81	2.14	100
LBRNJ12555GL101MN	NS 12555T 101MN 8	100	±20%	0.117	1.53	1.86	100
LBRNJ12555GL151MN	NS 12555T 151MN 8	150	±20%	0.215	1.10	1.30	100
LBRNJ12555GL221MN	NS 12555T 221MN 8	220	±20%	0.270	1.00	1.18	100
LBRNJ12555GL331MN	NS 12555T 331MN 8	330	±20%	0.410	0.82	0.96	100
LBRNJ12555GL471MN	NS 12555T 471MN 8	470	±20%	0.520	0.68	0.80	100
LBRNJ12555GL681MN	NS 12555T 681MN 8	680	±20%	0.870	0.48	0.61	100
LBRNJ12555GL102MN	NS 12555T 102MN 8	1000	±20%	1.44	0.41	0.46	100
LBRNJ12555GL152MN	NS 12555T 152MN 8	1500	±20%	1.73	0.40	0.44	100

12565 type

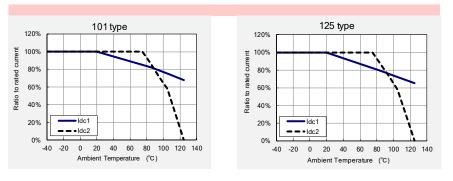
		N			Rated curre	nt ※)[A]	Inequeincy (kn2) 100
New part number	Old part number (for reference)	Nominal inductance [μΗ]	Inductance tolerance	DC Resistance [Ω](±20%)	Saturation current Idc1	Temperature rise current Idc2	
LBRNJ12565GL2R0NN	NS 12565T 2R0NN 8	2.0	±30%	0.0080	13.91	7.60	100
LBRNJ12565GL4R2NN	NS 12565T 4R2NN 8	4.2	±30%	0.0126	9.40	5.91	100
LBRNJ12565GL7R0NN	NS 12565T 7R0NN 8	7.0	±30%	0.0162	7.80	5.21	100
LBRNJ12565GL100MN	NS 12565T 100MN 8	10	±20%	0.0199	6.00	4.75	100
LBRNJ12565GL150MN	NS 12565T 150MN 8	15	±20%	0.0237	5.60	4.33	100
LBRNJ12565GL220MN	NS 12565T 220MN 8	22	±20%	0.0310	4.20	3.91	100
LBRNJ12565GL330MN	NS 12565T 330MN 8	33	±20%	0.0390	3.80	3.22	100
LBRNJ12565GL470MN	NS 12565T 470MN 8	47	±20%	0.0575	3.34	2.78	100
LBRNJ12565GL680MN	NS 12565T 680MN 8	68	±20%	0.0775	2.70	2.30	100
LBRNJ12565GL101MN	NS 12565T 101MN 8	100	±20%	0.123	2.23	1.81	100
LBRNJ12565GL151MN	NS 12565T 151MN 8	150	±20%	0.173	1.80	1.54	100
LBRNJ12565GL221MN	NS 12565T 221MN 8	220	±20%	0.273	1.39	1.18	100

🛑 12575 type

		N. 1. 1. 1.			Rated curre	nt ※)[A]	Measuring frequency [kHz] 100
New part number	Old part number (for reference)	Nominal inductance [µ H]	Inductance tolerance	DC Resistance [Ω](±20%)	Saturation current Idc1	Temperature rise current Idc2	
LBRNJ12575GL1R2NN	NS 12575T 1R2NN 8	1.2	±30%	0.0058	18.08	9.15	100
LBRNJ12575GL2R7NN	NS 12575T 2R7NN 8	2.7	±30%	0.0085	13.91	7.69	100
LBRNJ12575GL3R9NN	NS 12575T 3R9NN 8	3.9	±30%	0.0099	12.10	7.38	100
LBRNJ12575GL5R6NN	NS 12575T 5R6NN 8	5.6	±30%	0.0116	10.20	6.36	100
LBRNJ12575GL6R8NN	NS 12575T 6R8NN 8	6.8	±30%	0.0131	9.50	5.84	100
LBRNJ12575GL100MN	NS 12575T 100MN 8	10	±20%	0.0156	7.65	5.55	100
LBRNJ12575GL150MN	NS 12575T 150MN 8	15	±20%	0.0184	6.30	5.22	100
LBRNJ12575GL220MN	NS 12575T 220MN 8	22	±20%	0.0260	5.50	4.05	100
LBRNJ12575GL330MN	NS 12575T 330MN 8	33	±20%	0.0390	4.30	3.48	100
LBRNJ12575GL470MN	NS 12575T 470MN 8	47	±20%	0.0515	3.60	2.95	100
LBRNJ12575GL680MN	NS 12575T 680MN 8	68	±20%	0.0900	2.78	2.10	100
LBRNJ12575GL101MN	NS 12575T 101MN 8	100	±20%	0.110	2.50	2.01	100
LBRNJ12575GL151MN	NS 12575T 151MN 8	150	±20%	0.161	1.90	1.51	100
LBRNJ12575GL221MN	NS 12575T 221MN 8	220	±20%	0.300	1.60	1.10	100
LBRNJ12575GL102MN	NS 12575T 102MN 8	1000	±20%	1.170	0.72	0.53	100

%) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

*) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)

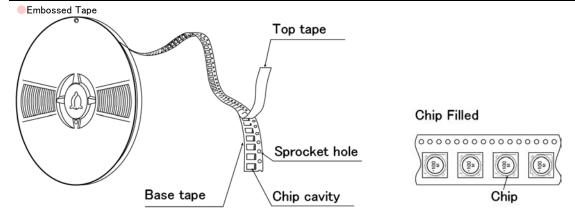

XX) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

Derating of Rated Current

LBRN series

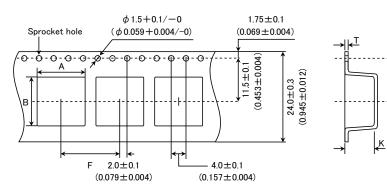
Derating of current is necessary for LBRN series depending on ambient temperature.

Please refer to the chart shown below for appropriate derating of current.

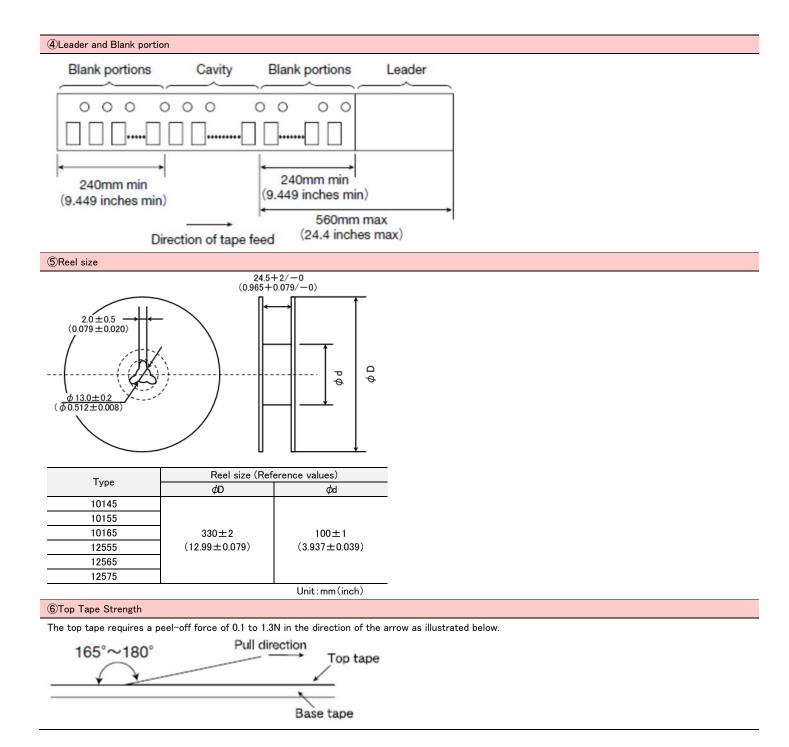


Wire-wound Ferrite Power Inductors LSRN/LCRN/LBRN/LLRN/LMRN series

PACKAGING


①Packing Quantity		
Tuno	Standard Quantity (1reel) [pcs]	Minimum Quantity [pcs]
Туре	Embossed Tape	Embossed Tape
10145	500	2000
10155	500	2000
10165	500	2000
12555	500	2000
12565	500	2000
12575	500	2000

②Tape Material


③Taping dimensions

Embossed tape 24mm wide (0.945 inches wide)

T	Chip cavity		Insertion pitch	Tape thickness		
Туре	А	В	F	Т	К	
10145	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	5.0 ± 0.1	
10145	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.197 ± 0.004)	
10155	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	6.0±0.1	
10155	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.236 ± 0.004)	
10165	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	7.0±0.1	
10105	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.276 ± 0.004)	
12555	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	6.1±0.1	
	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.240 ± 0.004)	
12565	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	7.1±0.1	
	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.280 ± 0.004)	
10575	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	8.0±0.1	
12575	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.315 ± 0.004)	
					Unit:mm(inch)	

Unit.mint(inch,

Wire-wound Ferrite Power Inductors LBRN series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Ferrite Power Inductors LMRN series for Medical Devices classified as GHTF Class C (Japan Class III)

RELIABILITY DATA

1. Operating Tempe	rature Range
Specified Value	$-40 \sim +125^{\circ} C$ (Including self-generated heat)
Test Methods and Remarks	Including self-generated heat

2. Storage Tempera	2. Storage Temperature Range	
Specified Value	$-40 \sim +85^{\circ}C$	
Test Methods and Remarks	-5 to 40°C for the product with taping.	

3. Rated current	
Specified Value	Within the specified tolerance

4. Inductance		
Specified Value	Within the specified tolera	nce
Test Methods and Remarks	Measuring equipment Measuring frequency	: LCR Meter(HP 4285A or equivalent) : 100kHz, 1V

5. DC Resistance		
Specified Value	Within the specified toleran	ce
Test Methods and Remarks	Measuring equipment	: DC ohmmeter(HIOKI 3227 or equivalent)

6. Self resonance fr	requency
Specified Value	-

7. Temperature cha	aracteristic		
Specified Value	Inductance change : Within $\pm 15\%$		
Test Methods and Remarks	With reference	t of inductance shall be taken at temperature rang ce to inductance value at +20°C., change rate sh aximum inductance deviation in step 1 to 5 Temperature (°C) 20 Minimum operating temperature 20 (Standard temperature) Maximum operating temperature 20	

8. Resistance to fle	xure of substrate
Specified Value	No damage
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. As illustrated below, apply force in the direction of the arrow indicating until deflection of the test board reaches to 2 mm. Test board size : 100 × 40 × 1.0 Test board material : glass epoxy-resin Solder cream thickness : 0.15 mm Board How the test board material test board material test board te
	Land dimension Type A B C
	$ \begin{array}{c} 101 \\ 2.5 \\ 125 \\ 2.5 \\ 8.6 \\ 3.2 \end{array} $
9. Insulation resista	nce : between wires
Specified Value	-
10. Insulation resist	ance : between wire and core
Specified Value	-
11. Withstanding vo	tage : between wire and core
Specified Value	-
12. Adhesion of terr	ninal electrode
Specified Value	Shall not come off PC board
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. Applied force : 10N to X and Y directions. Duration : 5s. Solder cream thickness : 0.15mm 10 N, 5 s

13. Resistance to v	vibration		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
		soldered to the test board by the reflow. I to below test conditions. 10~55Hz	
Test Methods	Total Amplitude	1.5mm (May not exceed acceleration 196m/s ²)	
and Remarks	Sweeping Method	10Hz to 55Hz to 10Hz for 1min.	
and Remarks	Time	X Y For 2 hours on each X, Y, and Z axis. Z	
	Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.		

14. Solderability			
Specified Value	At least 90% of surface of terminal electrode is covered by new solder.		
Test Methods and	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux : Ethanol solution containing rosin 25%.		
Remarks	Solder Temperature	245±5°C]
	Time	5±1.0 sec.	
Wimmersion depth : All sides of mounting terminal shall be immersed.		ninal shall be immersed.	

15. Resistance to	15. Resistance to soldering heat		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
Test Methods	The test sample shall be exposed to reflow oven at $230\pm5^{\circ}$ C for 40 seconds, with peak temperature at $260\pm5^{\circ}$ C for 5 seconds, 2 times.		
and Remarks	Test board material : glass epoxy–resin Test board thickness : 1.0mm Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.		

16. Thermal shock				
Specified Value		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
		•	elow table in sequence. The t	The test samples shall be placed at specified temperature for specified emperature cycle shall be repeated 100 cycles.
-	Step	Temperature (°C)	Duration (min)	
Test Methods	1	-40 ± 3	30±3	
and Remarks	2	Room temperature	Within 3	
	3	$+85\pm2$	30 ± 3	
	4	Room temperature	Within 3	
	Recover	y : At least 2hrs of recovery	under the standard conditio	n after the test, followed by the measurement within 48hrs.

17. Damp heat			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
T . M	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.		
Test Methods and Remarks	Temperature	60±2°C	
and Remarks	Humidity	90~95%RH	
	Time	500+24/-0 hour	
	Recovery : At leas	st 2hrs of recovery under	the standard condition after the test, followed by the measurement within 48hrs.

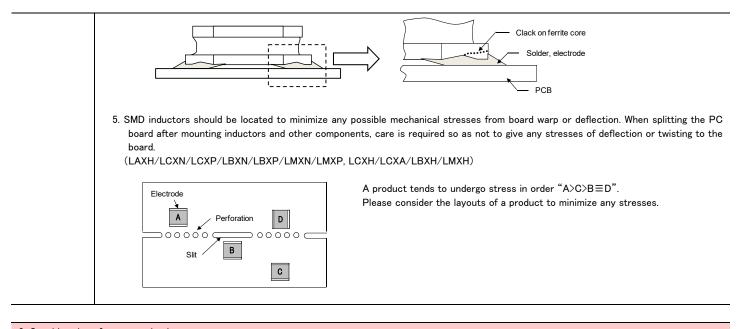
18. Loading under	18. Loading under damp heat			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods	The test samples sh as shown in below t	able.	st board by the reflow. tic oven set at specified temperature and humidity and applied the rated current continuously	
and Remarks	Temperature Humidity	60±2°C 90~95%RH	-	
	Applied current	Rated current		
	Time	500+24/-0 hour		
	Recovery : At lea	st 2hrs of recovery under	r the standard condition after the test, followed by the measurement within 48hrs.	

19. Low temperatur	19. Low temperature life test			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods	The test samples sha in below table.	all be soldered to the test b	board by the reflow. After that, the test samples shall be placed at test conditions as shown	
and Remarks	Temperature	$-40\pm2^{\circ}C$		
	Time	500+24/-0 hour		
	Recovery : At leas	st 2hrs of recovery under t	the standard condition after the test, followed by the measurement within 48hrs.	

20. High temperatur	re life test
Specified Value	-

21. Loading at high	21. Loading at high temperature life test			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	The test samples sh	all be soldered to the test	board by the reflow soldering.	
Test Methods	Temperature	85±2°C		
and Remarks	Applied current	Rated current		
	Time	500+24/-0 hour		
	Recovery : At lea	st 2hrs of recovery under	the standard condition after the test, followed by the measurement within 48hrs.	

22. Standard condition		
Specified Value	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20%of relative humidity. When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of 20±2°C of temperature, 65±5% relative humidity. Inductance is in accordance with our measured value.	


Wire-wound Ferrite Power Inductors LAYP series for Automotive Powertrain and safety Wire-wound Ferrite Power Inductors LAXH series for Automotive Powertrain and safety Wire-wound Ferrite Power Inductors LCXN/LCXP series for Automotive Body & Chassis and Infotainment Wire-wound Ferrite Power Inductors LCXH series for Automotive Body & Chassis and Infotainment Wire-wound Ferrite Inductors for Class D Amplifier LCXA for Automotive Body & Chassis and Infotainment Wire-wound Ferrite Power Inductors LCRN series for Automotive Body & Chassis and Infotainment Wire-wound Ferrite Power Inductors LBXN/LBXP series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Ferrite Power Inductors LBXH series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Ferrite Power Inductors LBRN series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Ferrite Power Inductors LMXN/LMXP series for Medical Devices classified as GHTF Class C (Japan Class III) Wire-wound Ferrite Power Inductors LMXH series for Medical Devices classified as GHTF Class C (Japan Class III) Wire-wound Ferrite Power Inductors LMRN series for Medical Devices classified as GHTF Class C (Japan Class III)

PRECAUTIONS

1. Circuit Desigr	1
	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurous acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environmental
Precautions	conditions.
	◆Operating Current (Verification of Rated current)
	1. The operating current including inrush current for inductors must always be lower than their rated values.
	2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
	◆Temperature rise
	Temperature rise of power choke coil depends on the installation condition in end products.
	Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design	
Precautions	 Land pattern design Please refer to a recommended land pattern. There is stress, which has been caused by distortion of a PCB, to the inductor. (LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP, LCXH/LCXA/LBXH/LMXH) Please consider the arrangement of parts on a PCB. (LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP, LCXH/LCXA/LBXH/LMXH)
Technical considerations	 Land pattern design Surface Mounting Mounting and soldering conditions should be checked beforehand. Applicable soldering process to this products is reflow soldering only. Please use the recommended land pattern shown as below. Electrical characteristics and the mounting ability of the product are being considered in the recommended land pattern. If a PCB is designed with other dimensions, defective soldering and stress to a product may occur due to misalignment. The performance of the product may not be brought out. If an adopted land pattern is different from the recommended land pattern, stress to the product will increase. It may cause cracks or defective electrical characteristics of the product. Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP, LCXH/LCXA/LBXH/LMXH) As coefficients of thermal expansion between an inductor and a PCB differs, cracks may occur on a ferrite core when thermal stress is applied to them after mounting an inductor. (Please refer to the drawings below.) Please conduct validation completely before studying adoption of this product with taking on responsibility. LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP, LCXH/LCXA/LBXH/LMXH)

3. Considerations for automatic placement Precautions Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. Adjustment of mounting machine 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. 2. Stress may be applied to a product with a warp or a twist in handling of the product. Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. (LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP, LCXH/LCXA/LBXH/LMXH) Wrap>

Precautions • Reflow soldering 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. 2. The product shall be used reflow soldering only. 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. • Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to solder heat, soldering room on the land-pattern. • Soldering iron on the land-pattern. • Soldering iron should not directly touch the inductor. • Pur the soldering iron should not directly touch the inductor. • Preflow soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequen degrade the reliability of the products. Recommended reflow condition (Pb free solder) LAXH/LCXA/LEXH/LMXH, LCRN/LERN/LMRN LGXH/LCXA/LEXH/LMXH, LCRN/LERN/LMRN 100 400	4. Soldering		
Technical considerations Technical considerati	Precautions	 Please contact any of our offices for a reflow soldering, and refer t The product shall be used reflow soldering only. Please do not add any stress to a product until it returns in normal Lead free soldering When using products with lead free soldering, we request to use the heat, soldering etc sufficiently. Recommended conditions for using a soldering iron(Repair) Put the soldering iron on the land-pattern. Soldering iron's temperature - Below 350°C Duration - 3 seconds or less 	I temperature after reflow soldering.
Heating Time[sec] Heating Time[sec]		1. If products are used beyond the range of the recommended condegrade the reliability of the products. Recommended reflow condition (Pb free solder) <u>LAXH/LCXN/LCXP/LBXN/LBXP/LMXN/LMXP,</u> <u>LCXH/LCXA/LBXH/LMXH, LCRN/LBRN/LMRN</u> 300 5sec max 200 150~180 90±30sec 230°C min	$\begin{array}{c} \underline{LAYP} \\ 300 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

5. Cleaning	
Precautions	 Cleaning conditions 1. Washing by supersonic waves shall be avoided.
Technical considerations	 Cleaning conditions 1. If washed by supersonic waves, the products might be broken.

6. Handling	
Precautions	 Handling Keep the product away from all magnets and magnetic objects. Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations Please do not give the product any excessive mechanical shocks. Please do not add any shock and power to a product in transportation. Pick-up pressure Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. Packing Please avoid accumulation of a packing box as much as possible.
Technical considerations	 Handling There is a case that a characteristic varies with magnetic influence. Breakaway PC boards (splitting along perforations) The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. Mechanical considerations There is a case to be damaged by a mechanical shock. There is a case to be broken by the handling in transportation. Pick-up pressure Damage and a characteristic can vary with an excessive shock or stress. Packing If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage conditions	
Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Storage conditions Ambient temperature : -5~40°C Humidity : Below 70% RH The recommended ambient temperature is below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	 Storage Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

