Please read this notice before using the TAIYO YUDEN products.

Product Information in this Catalog

Product information in this catalog is as of March 2023. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment for consumer (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets, or the equipment approved separately by TAIYO YUDEN.

TAIYO YUDEN has the product series intended for use in the following equipment. Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

Application	Product Series	Quality Grade*3	
Application	Equipment ⁺¹	Category (Part Number Code *2)	
Automotive	Automotive Electronic Equipment (POWERTRAIN, SAFETY)	A	1
Automotive	Automotive Electronic Equipment (BODY & CHASSIS, INFOTAINMENT)	С	2
Industrial	Telecommunications Infrastructure and Industrial Equipment	В	2
Medical	Medical Devices classified as GHTF Class C (Japan Class III)	Μ	2
Medical	Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)	L	3
Consumer	General Electronic Equipment	S	3
	Only for Mobile Devices *4	E	4

*Notes:1. Based on the general specifications required for electronic components for such equipment, which are recognized by TAIYO YUDEN, the use of each product series for the equipment is recommended. Please be sure to contact TAIYO YUDEN before using our products for equipment other than those covered by the product series.

2. On each of our part number, the 2nd code from the left is a code indicating the "Category" as shown in the above table. For details, please check the explanatory materials regarding the part numbering system of each of our products.

3. Each product series is assigned a "Quality Grade" from 1 to 4 in order of higher quality. Please do not incorporate a product into any equipment with a higher Quality Grade than the Quality Grade of such product without the prior written consent of TAIYO YUDEN.

4. The applications covered by this product series are limited to mobile devices (smartphone, tablet PC, smartwatch, handheld game console, etc.) among general electronic equipment for consumer. The design, specifications and operating environment, etc. differ from those of the product series for "General Electronic Equipment" (Category: S), so please check the individual product specification sheets for details. The product series for "General Electronic Equipment" (Category: S) can also be used for mobile devices.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

(1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)

(2) Traffic signal equipment

(3) Disaster prevention equipment, crime prevention equipment

- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, data-processing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.)

- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2
- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)

(5) Undersea equipment (submarine repeating equipment, etc.)

(6) Military equipment

(7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

- *Notes:1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
 - 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves conforming to the product specifications specified in the individual product specification sheets, and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement, provided, however, that our products shall be used for general-purpose and standard use in the equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

Industrial Application Guide

We have the product series (the 2nd code from the left side of the part number is "B") intended for use in telecommunications infrastructure and industrial equipment (its typical examples are as shown in the table below). Therefore, when using our products for these equipment, please check it carefully by referring to the part number or the individual product specification sheets and use the corresponding product series. Should you have any questions on this matter, please contact us.

Product Series (The 2nd Code from the Left Side of the Part Number)	Category	Telecommunications Infrastructure and Industrial Equipment (Typical Example)		
	Telecommunications Infrastructure	 Base Station Optical Transceiver Router/Switch (Carrier-Grade) UPS (Uninterruptible Power Supply), etc. 		
	Factory Automation	 PLC (Programmable Logic Controller) Servomotor/Servo Driver Industry Robot, etc. 		
В	Measurement	 Gas Meter Water Meter Flow Meter Pressure Gauge Meter Magnetometer Thermometer, etc. 		
	Electric Power Apparatus	 Power Conditioner (Solar Power System) Smart Meter GFCI (Ground Fault Circuit Interrupter) Electric Vehicle Charging Station, etc. 		

Wire–wound Metal Power Inductors MCOIL[™] LBEN series for Telecommunications Infrastructure and Industrial Equipment

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

PART		ED												* 0	ti.		mp.:-4	10 - +	1059	C (Im	ماريطان		16		ted be		REFLO	N
PARI	NUMBI	ER												* Ope	ratir	ng re	mp.:-4	1 0∼+	125		ciuair	ng se	eir-ge	nera	tea ne	eat)		
L B		Ν	A	2	5	2	0	Μ	K	T	1	R	0	M]									
	1		2		3)		(4	4)	5		6		$\overline{\mathcal{O}}$			8											
①Series																											_	
Co (1)(2)	(3)(4)																											
LB	EN	Wi	re-wo	und M	etal F	Powe	r Ind	uctor	for T	elecor	nmun	icatio	ns In	frastru	ctur	e and	l Indus	trial E	quip	ment	t							
(1) Produ	uct Gro	up												(3) Ty	ре													
Code														Cod	е													
L					Indu	ctors	5							E			Ν	/letal	Wire-	-wou	ınd (H	ligh f	filling	type	.)			
(-) -														<i></i> –														
(2) Cate	gory	D								0					-	es, C	haract	eristi	cs								_	
Code	. .		ommer					- C	lualit	y Grad	le			Cod N	e				Ctan	مامسما	Pow	an ak	aalka					
В	I ele		nunica Indust				ture			2				N					Stan	dard	Pow	er cr	поке					
②Featur	res				<u> </u>									⑤Pac	kagi	ing												
Co	de					Feat								Code						Pac	ckagii	ng						
A	4		5-sur	face e	lectro	ode ((Ag−r	esin ×	Sn-	plate)					Т						Ta	aping	ŗ					
③Dimen	sions (L	_×W)	1											6Nor	ninal	l indu	ictance	e										
Co				Dim				/) [mn	ן]						Cod				N	lomin	nal ind	ducta	ance[
20		_				2.0 ×								(e	kam									נייאַ				
25	20					2.5 ×	< 2.0								R47		_					0.47						
	· /-	-)													1R0		_					1.0						
④Dimen Co				D	imon	aian	(T)	[mm]						<u>Ж</u> R=	4R7		noint					4.7						
0				U	inten	1.		[11111]						<u>w</u> n-	Dec	amai	ροιπτ											
	IX.	1					-							(7)Ind	ucta	nce t	oleran	се										
															Cod					Indu	ictan	ce to	leran	ice				
															М						±	:20%	ó					
														⑧Inte	rnal	code	Э											

STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY Recommended Land Patterns Surface Mounting ·Mounting and soldering conditions should be checked beforehand. Applicable soldering process to these products is reflow soldering only. ≥ С В Туре A С 2016 0.8 0.8 1.8 e 2520 0.85 1.2 2.2 Unit:mm A В Π A Standard quantity[pcs] т Туре L W е Taping 2.0 ± 0.2 1.6 ± 0.2 1.2 max 0.5 ± 0.2 2016MK 3000 (0.079 ± 0.008) (0.063 ± 0.008) (0.020 ± 0.008) (0.047 max) 2.5 ± 0.2 2.0 ± 0.2 1.2 max 0.6 ± 0.3 2520MK 3000 (0.098 ± 0.008) (0.079 ± 0.008) (0.047 max) (0.020 ± 0.012) Unit:mm(inch)

PART NUMBER

All the Wire-wound Metal Power Inductors of the catalog lineup are RoHS compliant.

Notes)

• The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.

The products are for Telecommunications infrastructure and Industrial equipment.

Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,

and please review and approve the product specifications before ordering

2016MK type 【Thickness:1.2mm max.】

				0.15		Rate			
New part number	Old part number (for reference)	Nominal inductance [μH]	Inductance tolerance	Self-resonant frequency [MHz](min.)	DC Resistance [Ω](max.)	Saturation current Idc1	Temperature rise current① Idc2	Temperature rise current② Idc2	Measuring frequency [MHz]
LBENA2016MKTR24M0NK	MEMK2016TR24MGNK8	0.24	±20%	-	0.018	6,800	3,500	5,500	1
LBENA2016MKTR33M0NK	MEMK2016TR33MGNK8	0.33	±20%	-	0.022	5,400	3,000	4,900	1
LBENA2016MKTR47M0NK	MEMK2016TR47MGNK8	0.47	±20%	-	0.025	4,800	2,900	4,700	1
LBENA2016MKT1R0M0NK	MEMK2016T1R0MGNK8	1.0	±20%	-	0.045	3,100	2,000	3,200	1
LBENA2016MKT2R2M0NK	MEMK2016T2R2MGNK8	2.2	±20%	-	0.120	2,200	1,100	1,800	1

2520MK type [Thickness: 1.2mm max.]

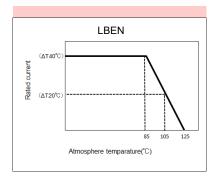
						Rate	max.)	Measuring	
New part number			DC Resistance [Ω](max.)	Saturation current Idc1	Temperature rise current① Idc2	Temperature rise current② Idc2	frequency [MHz]		
LBENA2520MKTR15M0NK	MEMK2520TR15MGNK8	0.15	±20%	-	0.009	10,200	4,900	6,700	1
LBENA2520MKTR33M0NK	MEMK2520TR33MGNK8	0.33	±20%	-	0.015	7,000	4,000	5,600	1
LBENA2520MKTR47M0NK	MEMK2520TR47MGNK8	0.47	±20%	-	0.020	5,900	3,700	5,000	1
LBENA2520MKT1R0M0NK	MEMK2520T1R0MGNK8	1.0	±20%	-	0.042	4,400	2,400	3,200	1
LBENA2520MKT1R5M0NK	MEMK2520T1R5MGNK8	1.5	±20%	-	0.057	3,300	2,100	2,800	1
LBENA2520MKT2R2M0NK	MEMK2520T2R2MGNK8	2.2	±20%	-	0.077	3,000	1,700	2,400	1
LBENA2520MKT3R3M0NK	MEMK2520T3R3MGNK8	3.3	±20%	-	0.131	2,300	1,300	1,800	1
LBENA2520MKT4R7M0NK	MEMK2520T4R7MGNK8	4.7	±20%	-	0.185	2,100	1,100	1,500	1

*) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

*) The temperature rise current value (Idc2) (1) is the DC current value having temperature increase up to 20°C. (at 20°C)

*) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)

※) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value. Material:FR4

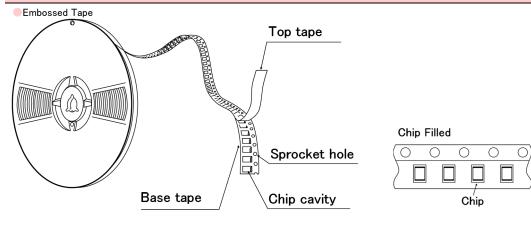

※) Idc2 Measurement board data

Board dimensions: $100 \times 50 \times 1.6t$ mm Pattern dimensions: 43×59.2 mm Pattern thickness: 50 μ m

Derating of Rated Current

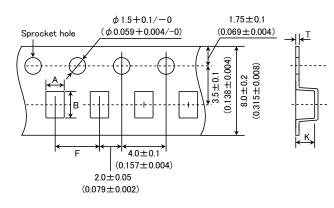
LBEN series

Derating of current is necessary for LBEN series depending on ambient temperature. Please refer to the chart shown below for appropriate derating of current.



Wire-wound Metal Power Inductors MCOIL[™] LSEN/LLEN/LCEN/LBEN/LMEN series Wire-wound Metal Power Inductors MCOIL[™] LSEP/LLEP series Wire-wound Metal Power Inductors MCOIL[™] LSEU/LLEU series

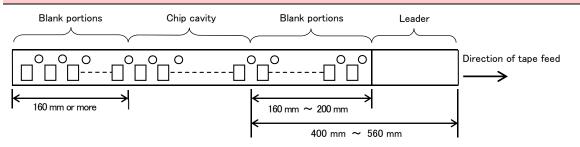
PACKAGING


①Minimum Quantity	
Turne	Standard Quantity [pcs]
Туре	Tape & Reel
2012HK	3000
2012KK	3000
2016MK	3000
2016HK	3000
2016KK	3000
2520KK	3000
2520MK	3000
3225HK	3000

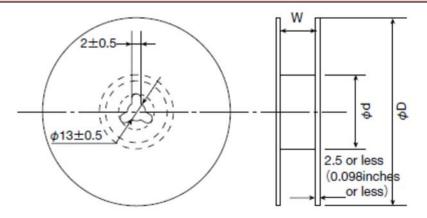
(2) Tape Material

③Taping dimensions

Embossed tape 8mm wide (0.315 inches wide)



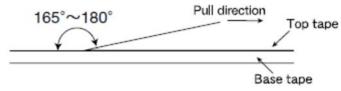
Туре	Chip o	cavity	Insertion pitch	Tape thickness		
Туре	А	В	F	Т	К	
2012HK	1.45±0.1	2.25 ± 0.1	4.0±0.1	0.25 ± 0.05	0.9+0.15/-0.1	
2012118	(0.057 ± 0.004)	(0.089 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.035+0.006/-0.004)	
2012KK	1.45±0.1	2.25 ± 0.1	4.0±0.1	0.25 ± 0.05	1.1±0.1	
2012KK	(0.057 ± 0.004)	(0.089 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.043 ± 0.004)	
2016MK	1.9±0.1	2.45±0.1	4.0±0.1	0.25 ± 0.05	1.4±0.1	
2010/01	(0.075 ± 0.004)	(0.097 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.055 ± 0.004)	
2016HK	1.9 ± 0.1	2.45 ± 0.1	4.0±0.1	0.25 ± 0.05	1.2±0.1	
2010HK	(0.075 ± 0.004)	(0.097 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.047 ± 0.004)	
2016KK	1.9±0.1	2.45±0.1	4.0±0.1	0.25 ± 0.05	1.2±0.1	
2010KK	(0.075 ± 0.004)	(0.097 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.047 ± 0.004)	



Turne	Chip	cavity	Insertion pitch	Tape	thickness
Туре	A	В	F	Т	К
2520KK	2.4±0.1	2.9±0.1	4.0±0.1	0.25 ± 0.05	1.1±0.1
	(0.094±0.004)	(0.114±0.004)	(0.157±0.004)	(0.009 ± 0.002)	(0.043±0.004)
2520MK	2.4±0.1	2.9 ± 0.1	4.0 ± 0.1	0.25±0.05	1.4±0.1
	(0.094±0.004)	(0.114 ± 0.004)	(0.157 ± 0.004)	(0.009±0.002	(0.055±0.004)
3225HK	2.8±0.1	3.5 ± 0.1	4.0 ± 0.1	0.25±0.05	1.1±0.1
	(0.110±0.004)	(0.138 ± 0.004)	(0.157 ± 0.004)	(0.009±0.002	(0.043±0.004)
	•	•	•		Unit:mm(inch)

4 Leader and Blank portion

⑤Reel size



Туре	R	Reel size (Reference values)							
туре	φD	ϕ d	W						
2012HK									
2012KK									
2016MK		60+1/-0 (2.36+0.039/0)							
2016HK	180+0/-3		10.0 ± 1.5 (0.394±0.059)						
2016KK	(7.087+0/-0.118)								
2520KK									
2520MK									
3225HK									

Unit:mm(inch)

(6)Top Tape Strength

The top The top tape requires a peel-off force of 0.1 to 1.0N in the direction of the arrow as illustrated below.

Wire-wound Metal Power Inductors MCOIL[™] LBEN series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Metal Power Inductors MCOIL[™] LMEN series for Medical Devices classified as GHTF Class C (Japan Class III)

RELIABILITY DATA

1. Operating Tempe	1. Operating Temperature Range					
Specified Value	$-40 \sim +125^{\circ}C$					
Test Methods and Remarks	Including self-generated heat					

2. Storage Tempera	2. Storage Temperature Range				
Specified Value	-40~+85°C				
Test Methods and Remarks	0 to 40°C for the product with taping.				

3. Rated current	
Specified Value	Within the specified tolerance

4. Inductance	
Specified Value	Within the specified tolerance
Test Methods and Remarks	Measuring equipment : LCR Meter (HP 4294A or equivalent) Measuring frequency : 1MHz、0.5V

5. DC Resistance		
Specified Value	Within the specified tole	rance
Test Methods and Remarks	Measuring equipment	: DC ohmmeter(HIOKI 3227 or equivalent)

6. Temperature characteristic				
Specified Value	Inductance change : Within $\pm 15\%$			
Test Methods and Remarks	Measurement of inductance shall be taken at temperature range within $-40^{\circ}C \sim +125^{\circ}C$. With reference to inductance value at $+20^{\circ}C$., change rate shall be calculated.			

7. Resistance to fl	exure of substrate			
Specified Value	No damage			
Test Methods and Remarks	The test samples shall be s until deflection of the test Test board size Test board material Solder cream thickness	•	e reflow. As illustrated below, apply force in the direct Force $\overrightarrow{R340}$ Rod $\overrightarrow{R340}$ Board \overrightarrow{Test} sample 45 ± 2 Unit[m]	

8. Adhesion of terminal electrode					
Specified Value	No abnormality.				
	The test samples shall be soldered to the test board by the reflow.				
Test Methods and	Applied force	Applied force : 17.7N			
Remarks	Duration	: 60s.			
	Solder cream thickness	: 0.10mm.			

9. Resistance to vil	oration				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
	The test samples shall be soldered to the test board by the reflow. Then it shall be submitted to below test conditions				
	Frequency Range	10~55Hz			
Test Methods	Total Amplitude	1.5mm (May not exceed acceleration 196m/s ²)			
and Remarks	Sweeping Method	10Hz to 55Hz to 10Hz for 1min.			
	Time	X Y For 2 hours on ach X, Y, and Z axis. Z			
	Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.				

10. Solderability					
Specified Value	At least 90% of surface of te	At least 90% of surface of terminal electrode is covered by new solder.			
T . M	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux : Ethanol solution containing rosin 25%.				
Test Methods and Remarks	Solder Temperature	245±5°C			
Remarks	Time	5 ± 0.5 sec.			
	XImmersion depth : All sides	of mounting term	inal shall be immersed.		

11. Resistance to	11. Resistance to soldering heat				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
Test Methods and Remarks	The test sample shall be exposed to reflow oven at 230°C for 40 seconds, with peak temperature at $260+0/-5$ °C for 5 seconds, 2 times. Test board material : Glass epoxy-resin Test board thickness : 1.6mm Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.				

12. Thermal shock					
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified temperature for specified time by step 1 to step 2 as shown in below table in sequence. The temperature cycle shall be repeated 1000 cycles.				
Test Methods	Step	Temperature (°C)	Duration (min)		
and Remarks	1	-40 ± 5	30±3		
	2	$+125\pm5$	30±3		
	Recovery	: At least 2hrs of recovery u	under the standard condition	after the test, followed by the measurement within 48hrs.	

13. Damp heat					
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
T . M		The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.			
Test Methods	Temperature	85±2°C			
and Remarks	Humidity	85±5%RH			
	Time	1000 hour			
	Recovery : At leas	t 2hrs of recovery under th	ne standard condition after the test, followed by the measurement within 48hrs.		

14. High temperatur	re life test			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown in below table.			
	Temperature	125±2°C		
	Time	1000 hour		
	Recovery : At least 2	2hrs of recovery under the	e standard condition after the test, followed by the measurement within 48hrs.	

15. Loading at high	n temperature life test		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
	The test samples sh in below table.	all be soldered to the test boar	d by the reflow. After that, the test samples shall be placed at test conditions as shown
	Temperature	1). 85±2°C	
Test Methods and Remarks	Applied current	2). 105±3°C 1). Rated current(+40°C)	-
		2). Rated current(+20°C)	
	Time	1000hour	
	Recovery : At least	2hrs of recovery under the sta	dard condition after the test, followed by the measurement within 48hrs.

16. Standard condit	tion
Specified Value	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity. When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of 20±2°C of temperature, 65±5% relative humidity. Inductance is in accordance with our measured value.

PRECAUTIONS

1. Circuit Design	
1. Circuit Design Precautions	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurous acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environmental conditions. Operating Current (Verification of Rated current) The operating current including inrush current for inductors must always be lower than their rated values. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
	Temperature rise Temperature rise of power choke coil depends on the installation condition in end products. Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

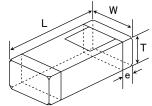
2. PCB Design	
Precautions	 Land pattern design 1. Please refer to a recommended land pattern.
Technical considerations	 Land pattern design Surface Mounting Mounting and soldering conditions should be checked beforehand. Applicable soldering process to this products is reflow soldering only.

3. Considerations	3. Considerations for automatic placement						
Precautions	 Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 						
Technical considerations	♦Adjustment of mounting machine When installing products, care should be taken not to apply distortion stress as it may deform the products. 						

4. Soldering	
Precautions	 Reflow soldering Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. The product shall be used reflow soldering only. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. Lead free soldering When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
Technical considerations	Reflow soldering If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) 300 300 150~180°C 150~180°C 90 ± 100 ±

5. Cleaning	
Precautions	 Cleaning conditions 1. Washing by supersonic waves shall be avoided.
Technical considerations	 Cleaning conditions If washed by supersonic waves, the products might be broken.

6. Handling	
Precautions	 Handling Keep the product away from all magnets and magnetic objects. Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations Please do not give the product any excessive mechanical shocks. Please do not add any shock and power to a product in transportation. Pick-up pressure Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. Packing Please avoid accumulation of a packing box as much as possible.
Technical considerations	 Handling There is a case that a characteristic varies with magnetic influence. Breakaway PC boards (splitting along perforations) The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. Mechanical considerations There is a case to be damaged by a mechanical shock. There is a case to be broken by the handling in transportation. Pick-up pressure Damage and a characteristic can vary with an excessive shock or stress. Packing If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.


7. Storage condi	tions
Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Storage conditions Ambient temperature : 0~40°C Humidity : Below 70% RH The recommended ambient temperature is below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	 Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

Multilayer Metal Power Inductors MCOIL[™] LBCN series for Telecommunications Infrastructure and Industrial Equipment

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

PART NUM	BER				「emp.:-40~+125°C(Including self-generated heat 「emp.:-55~+150°C(Including self-generated heat	
L B C		2 K K T 4 5	1 R 0 6		8	
①Series Code (1)(2)(3)(4) LBCN		inductor for Telecommuni	cations Infr	astructure and	Industrial Equipment	
(1) Product G	roup			(3) Type		
Code				Code		
L	Inductors	5	-	С	Metal Multilayer	
(2) Category			-	(4) Features,	Characteristics	
Code	Recommended equipment	Quality Grade		Code		
В	elecommunications Infrastruc	ture 2	-	N	Standard Power choke	
②Features Code		ture	I	⑤Packaging Code	Packaging	
F	5-surface electrode	with polarity marking	-	Т	Taping	
③Dimensions	(L×W)		_	6Nominal inc	ductance	
Code	Type(inch)	Dimensions(L×W) [mm]		Code (example)	Nominal inductance[µH]	
1608	1608(0603)	1.6 × 0.8	-	R24	0.24	
2012	2012(0805)	2.0 × 1.25	-	R47	0.47	
④Thickness			_	1R0 ≪R=Decima	1.0 1.0	
Code	Thickne			~		
KK	1.0	max	-	(7)Inductance		
				Code M	Inductance tolerance	
				IVI	±20%	
				⑧Internal co	de	
	DEXTERNAL DIMENSIONS /	STANDARD QUANTITY				

Туре		W	т		Standard quantity[pcs]		
	L	٧٧	1	e	Paper tape	Embossed tape	
1608KK	1.6±0.2	0.8±0.2	1.0 max	0.3±0.2	_	2000	
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.039 max)	(0.012 ± 0.008)	-	3000	
2012KK	2.0±0.2	1.25±0.2	1.0 max	0.5±0.3		0000	
(0805)	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.039 max)	(0.02 ± 0.012)	_	3000	
-						Unit:mm(i	

PART NUMBER

All the Multilayer Metal Power Inductors of the catalog lineup are RoHS compliant.

Notes)

• The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.

 ${\boldsymbol{\cdot}}$ The products are for Telecommunications infrastructure and Industrial equipment.

Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,

and please review and approve the product specifications before ordering.

●1608 type											
New part number	Old part number (for reference)	EHS	Nominal inductance [µ H]	tance Inductance tolerance	DC Resista luctance tolerance [mΩ]		2] current(Idc1)		Measuring frequency	Thickness [mm] (max.)	
			ιμΠ		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIdx.)	
LBCNF1608KKTR24MA	MCKK1608TR24M8C	RoHS	0.24	±20%	35	29	3.2	3.8	1	1.00	
LBCNF1608KKTR33MA	MCKK1608TR33M8C	RoHS	0.33	±20%	46	38	2.8	3.3	1	1.00	
LBCNF1608KKTR47MA	MCKK1608TR47M8C	RoHS	0.47	±20%	65	54	2.6	3.0	1	1.00	

●1608 type * Operating Temp.:-55~+150°C(Including self-generated heat)

New part number	Old part number (for reference)						EHS	Nominal inductance $[\mu H]$	Inductance tolerance	DC Resistance [mΩ]			current(Idc2)	Measuring frequency	Thickness [mm] (max.)
			L'MIN		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIdx./					
LBCNF1608KKTR24MAD	MCKK1608TR24M8C D	RoHS	0.24	±20%	35	29	3.2	3.8	1	1.00					
LBCNF1608KKTR33MAD	MCKK1608TR33M8C D	RoHS	0.33	±20%	46	38	2.8	3.3	1	1.00					
LBCNF1608KKTR47MAD	MCKK1608TR47M8C D	RoHS	0.47	±20%	65	54	2.6	3.0	1	1.00					

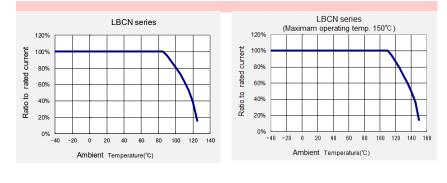
2012 type

New part number	Old part number (for reference)	EHS	Nominal inductance $[\mu H]$	Inductance tolerance	DC Res [m	sistance Ω]	Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
			ιμng		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIax./
LBCNF2012KKTR24MA	MCKK2012TR24M8C	RoHS	0.24	±20%	20	17	4.8	5.4	1	1.00
LBCNF2012KKTR33MA	MCKK2012TR33M8C	RoHS	0.33	±20%	30	25	4.4	4.5	1	1.00
LBCNF2012KKTR47MA	MCKK2012TR47M8C	RoHS	0.47	±20%	41	34	3.8	3.8	1	1.00
LBCNF2012KKT1R0MA	MCKK2012T1R0M8C	RoHS	1.0	±20%	85	71	2.7	2.7	1	1.00

2012 type * Operating Temp.:-55~+150°C(Including self-generated heat)

New part number	Old part number (for reference)	EHS	Nominal inductance $[\mu H]$	Inductance tolerance	_	sistance Ω]	Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness [mm] (max.)
			ιμiij		(max.)	(typ.)	[A] (max.)	current(Idc2) [A] (max.) 5.4 4.5	[MHz]	[IIIII] (IIIdx./
LBCNF2012KKTR24MAD	MCKK2012TR24M8C D	RoHS	0.24	±20%	20	17	4.8	5.4	1	1.00
LBCNF2012KKTR33MAD	MCKK2012TR33M8C D	RoHS	0.33	±20%	30	25	4.4	4.5	1	1.00
LBCNF2012KKTR47MAD	MCKK2012TR47M8C D	RoHS	0.47	±20%	41	34	3.8	3.8	1	1.00
LBCNF2012KKT1R0MAD	MCKK2012T1R0M8C D	RoHS	1.0	±20%	85	71	2.7	2.7	1	1.00

XIdc1 is the DC value at which the initial L value is decreased within 30% by the application of DC bias. (at 20°C)


&Idc2 is the DC value at which the temperature of element is increased within 40°C by the application of DC bias. (at 20°C)

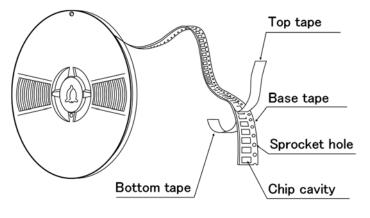
Derating of Rated Current

LBCN series

Derating of current is necessary for LBCN series depending on ambient temperature.

Please refer to the chart shown below for appropriate derating of current.

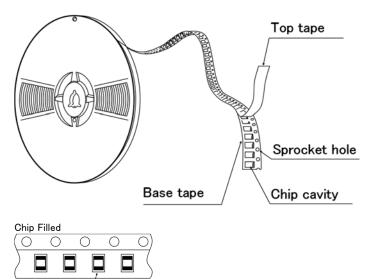
Multilayer Metal Power Inductors MCOIL[™] LSCN/LCCN/LBCN/LLCN/LMCN series


PACKAGING

Minimum QuantityTape & Reel Packaging

Turna		Thickness	Standard Quantity [pcs]		
Туре	Code	mm (inch)	Paper Tape	Embossed Tape	
1005 (0402)	EE	0.55 max(0.022 max)	10000	-	
1210 (0504)	EK	0.5 max (0.020 max)	5000	-	
1412 (0505)	FE	0.65 max(0.026 max)	4000	-	
1608 (0603)	FK	0.6 max (0.024 max)	4000	-	
1608 (0603)	FE	0.65 max (0.026 max)	4000	-	
1608 (0603)	НК	0.8 max (0.031 max)	4000	-	
1608 (0603)	KK	1.0 max (0.039 max)	-	3000	
2012 (0806)	НК	0.8 max (0.031 max)	4000	_	
2012 (0805)	КК	1.0 max (0.039 max)	-	3000	
2016 (0806)	FE	0.65 max (0.026 max)	4000	_	

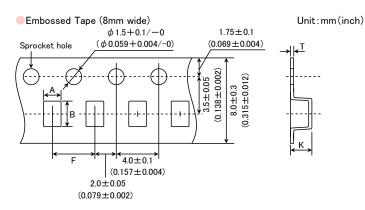
(2) Taping material


Card board carrier tape 1005/1210/1412/1608/2012/2016 type

Chip Filled

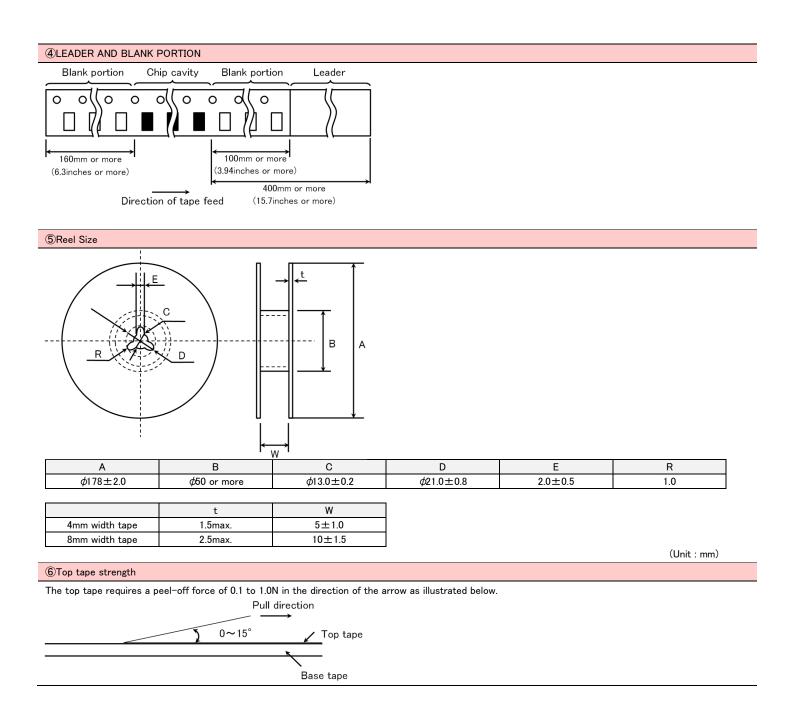
Embossed Tape 1608/2012 type

Chip



③Taping Dimensions

 (0.079 ± 0.002)


Paper tape (8mm wide) ϕ 1.5+0.1/-0 Sprocket hole $(\phi$ 0.059+0.004/-0) $(\phi$ 0.059+0.004/-0) $(\phi$ 0.069±0.004) $(\phi$ 0.059±0.004) $(\phi$ 0.050±0.004) $(\phi$ 0.05

Chip cavity Insertion Pitch Tape Thickness Thickness Туре Code Α в mm(inch) F т 0.55 max 0.8 1.3 2.0 ± 0.05 0.64max 1005 (0402) ΕE (0.021 max) (0.031) (0.051) (0.079 ± 0.002) (0.025max) 0.64max 0.5 max 1.3 1.55 4.0 ± 0.1 1210 (0504) ΕK (0.020 max) (0.051) (0.061) (0.157 ± 0.004) (0.025max) 0.65 max 1.6 1.8 4.0 ± 0.1 0.72max 1412 (0505) FE (0.063) (0.071) (0.157 ± 0.004) (0.026 max) (0.028max) 0.6 max 1.1 1.9 4.0 ± 0.1 0.72max 1608 (0603) FK (0.024 max) (0.043) (0.075) (0.157 ± 0.004) (0.028max) 0.65 max 1.1 1.9 4.0 ± 0.1 0.72max 1608 (0603) FF (0.026 max) (0.043) (0.075) (0.157 ± 0.004) (0.028max) 0.8 max 1.2 2.0 4.0 ± 0.1 0.9max 1608 (0603) ΗK (0.031 max) (0.047) (0.079) (0.157 ± 0.004) (0.035max) 0.8 max 1.65 2.4 4.0 ± 0.1 0.9max 2012 (0805) ΗK (0.094) (0.157 ± 0.004) (0.031 max) (0.065) (0.035max) 0.65 max 1.95 2.3 4.0 ± 0.1 0.72max 2016 (0806) FE (0.026 max) (0.077) (0.091) (0.157 ± 0.004) (0.028max) Unit : mm(inch)

Turne	Thickness		Chip cavity		Insertion Pitch	Tape Thi	ckness
Туре	Code	mm(inch)	A	В	F	К	Т
1608 (0603)	КК	1.0 max	1.15	1.95	4.0±0.1	1.5 max	0.3 max
1000 (0000)		(0.039 max)	(0.045)	(0.077)	(0.157±0.004)	(0.059 max)	(0.012 max)
2012 (0905)	2012 (0805) KK	1.0 max	1.55	2.35	4.0 ± 0.1	1.5 max	0.3 max
2012 (0803)		(0.039 max)	(0.061)	(0.093)	(0.157±0.004)	(0.059 max)	(0.012 max)

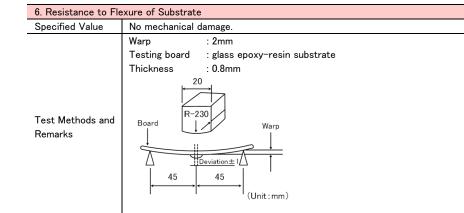
Unit : mm(inch)

Multilayer Metal Power Inductors MCOIL[™] LBCN series for Telecommunications Infrastructure and Industrial Equipment Multilayer Metal Power Inductors MCOIL[™] LMCN series for Medical Devices classified as GHTF Class C (Japan Class III)

RELIABILITY DATA

1. Operating Temperature Range

Specified Value $-40 \sim +125^{\circ}$ C (Including self-generated heat), End of part number "D" $\Rightarrow -55 \sim +150^{\circ}$ C (Including self-generated heat)


2. Storage Temperature RangeSpecified Value-40~+85°C

, End of part number "D"⇒−55~+110°C

3. Rated Current	
Specified Value	Idc1: The decreasing-rate of inductance value is within 30 %
Specified Value	Idc2: The temperature of the element is increased within 40°C

4. Inductance				
Specified Value	Refer to each specification.			
Test Methods and	Measuring frequency	: 1MHz		
Remarks	Measuring equipment	: E4991 (or its equivalent)		

5. DC Resistance	5. DC Resistance					
Specified Value	efer to each specification.					
Test Methods and Remarks	Measuring equipment: HIOKI RM3545 (or its equivalent)					

7. Solderability		
Specified Value	At least 90% of termi	nal electrode is covered by new solder.
Test Methods and	Solder temperature	:245±3°C (Sn/3.0Ag/0.5Cu)
Remarks	Duration	:4±1 sec.

8. Resistance to So	8. Resistance to Soldering					
Specified Value	Appearance:No significant abnormality					
Specified value	Inductance change: Within $\pm 10\%$					
	Solder temperature	:260±5°C				
	Duration	:10±0.5 sec.				
Test Methods and	Preheating temperature	:150 to 180°C				
Remarks	Preheating time	:3 min.				
	Flux	Immersion into ethanol solution with colophony for 3 to 5 sec.				
	Recovery	:2 to 3 hrs of recovery under the standard condition after the test. (See Note 1)				

Specified Value	Appearance:No significant abnormality						
	Inductance change: Within $\pm 10\%$						
	Condition	s for 1 cycle					
	Step	temperature(°C)	time(min.)				
	1	(Minimum Operating Temperature) $+0/-3$	30±3				
Taat Mathada	2	Room temperature	2~3				
Test Methods and Remarks	3	(Maximum Operating Temperature) $+3/-0$	30±3				
and memarks	4	Room temperature	2~3				
	Number o	Number of cycles: 1000					
	Recovery	:2 to 3 hrs of recovery under the standard condition a	fter the test.(See Note [·]	1)			

 10. Damp Heat(Steady state)

 Specified Value
 Appearance: No significant abnormality Inductance change: Within ±10%

 Test Methods and Remarks
 Temperature :60±2°C

 Uration
 :1000+24/-0 hrs

 Recovery
 :2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)

11. Loading under Damp Heat					
Specified Value	Appearance:No sign	ificant abnormality			
	Inductance change:	Within $\pm 10\%$			
	Temperature	:60±2°C			
To at Matheada and	Humidity	:90 to 95%RH			
Test Methods and	Applied current	: Idc2max			
Remarks	Duration	:1000+24/-0 hrs			
	Recovery	:2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)			

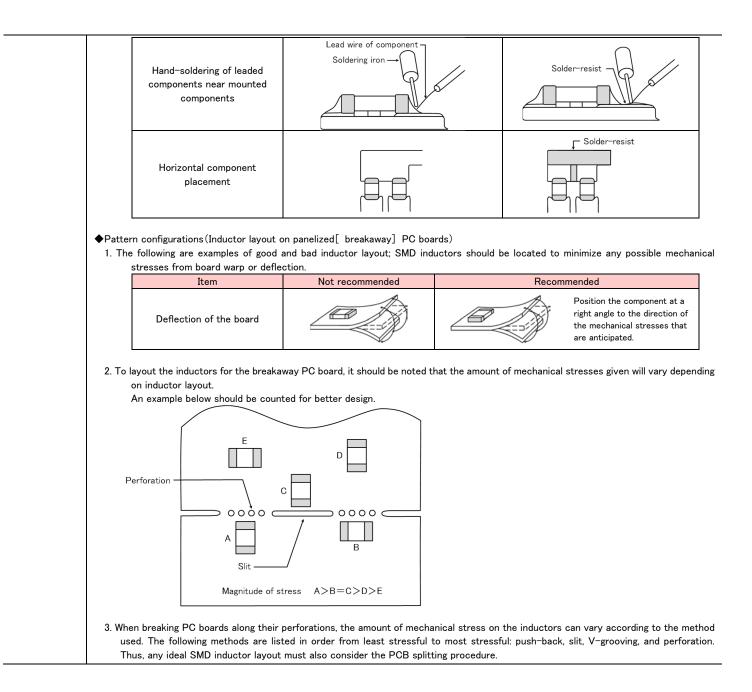
12. Loading at High	12. Loading at High Temperature					
Specified Value	Appearance : No significant abnormality					
Specified value	Inductance change: Within $\pm 10\%$					
Test Methods and	Temperature :85 \pm 2°C (End of part number "D" \Rightarrow 110 \pm 2°C)					
Remarks	Applied current :Idc2max					
Remarks	Duration : 1000 +24/-0 hrs.					
	Recovery :2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1)					

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 25 to 85% relative humidity.

When there are questions concerning measurement results:


In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}$ C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

PRECAUTIONS

	♦Verification of operating environment, electrical rating and performance
	 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe soci ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations ar should be clearly differentiated from components used in general purpose applications.
Precautions	 When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurou acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environment conditions.
	♦ Operating Current (Verification of Rated current)
	1. The operating current including inrush current for inductors must always be lower than their rated values.
	2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
	◆Temperature rise
	Temperature rise of power choke coil depends on the installation condition in end products.
	Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design						
Precautions	Who per (1) (2) ◆Patter After pro	en inductor formance. The amou Therefor which i When mo solderin rn configura er inductor cesses (P ards etc.)Fo	Therefore, th int of solder ore, when de n turn deter re than one ng point is s ations (Induc rs have bee CB cutting,	ed on a PCE applied can esigning lan mines the a part is join eparated by tor layout on n mounted board inspe	patterns) B, the size of land patterns and the amount of sold items must be carefully considered in the design affect the ability of chips to withstand mechanical d-patterns it is necessary to consider the appro- amount of solder necessary to form the fillets. ntly soldered onto the same land or pad, the pa v solder-resist. on panelized[breakaway] PC boards) on the boards, chips can be subjected to mec- action, mounting of additional parts, assembly into boattern configurations and the position of SMD ind	of solder land patterns: stresses which may lead to breaking or cracking. priate size and configuration of the solder pads d must be designed so that each component's chanical stresses in subsequent manufacturing the chassis, wave soldering the reflow soldered
	The imp (1)	e following roper patte Recomme A B C	ern designs a ended land d <u>1608</u> 0.7 0.9 1.0	d tables sh are also sho imensions f 2012 0.95 0.8 1.4	ow some examples of recommended patterns to wn. or a typical chip inductor land patterns for PCBs (Unit:mm)	prevent excessive solder amounts. Examples of $ \begin{array}{c c} \hline \\ \hline \\$
Technical	(2)	(2)Examples of good and bad solder Item			Not recommended	Recommended
considerations		Mixed mounting of SMD and leaded components			Lead wire of component	Solder-resist
	Component placement close to the chassis			Chassis Solder (for grounding) Electrode pattern	Solder-resist	

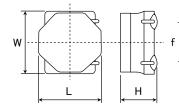
	◆Adjustment of mounting machine									
Precautions	1. Exc	essive impact load should not	be imposed on the inductors when mounting o	nto the PC boards.						
	2. The	maintenance and inspection of	of the mounter should be conducted periodical	у.						
	♦Adjust	tment of mounting machine								
			· · ·	l on the inductors, causing damage. To avoid this,						
			lered before lowering the pick-up nozzle:							
	(1)		p nozzle should be adjusted to the surface leve	el of the PC board after correcting for deflection of						
	(0)	board.								
			be adjusted between 1 and 3N static loads.	pick-up nozzle, supporting pins or back-up pins sh						
	(3)		rd. The following diagrams show some typical e							
		Item	Improper method	Proper method						
Technical considerations		Single-sided mounting	chipping or cracking	supporting pins						
		Double-sided mounting	chipping or cracking	supporting pins or back-up pins						
	im	pact on the inductors. To avoi		or back-up pins						

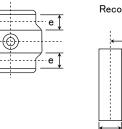
4. Soldering	
Precautions	 Reflow soldering Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. The product shall be used reflow soldering only. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. Lead free soldering When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. The conditions for Reworking with soldering irons Put the soldering iron on the land-pattern and don't touch it to the inductor directly. Soldering iron's temperature below 350 °C , Duration 3 seconds or less
Technical considerations	Reflow soldering If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) 300 300 40 sec max 40 sec max 90 ± 30 sec 230°C min Heating Time[sec] The allowable number of reflow soldering is 3 times.

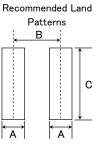
5. Cleaning	5. Cleaning					
Precautions	 Cleaning conditions Washing by supersonic waves shall be avoided. 					
Technical considerations	 Cleaning conditions If washed by supersonic waves, the products might be broken. 					

6. Resin coating	and mold
Precautions	 With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance. When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may lead to damage in inductors. In prior to use, please make the reliability evaluation with the product mounted in your application set.
7. Handling	
Precautions	 Breakaway PC boards(splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. General handling precautions Always wear static control bands to protect against ESD. Keep the inductors away from all magnets and magnetic objects. Use non-magnetic tweezers when handling inductors. Any devices used with the inductors(soldering irons, measuring instruments) should be properly grounded. Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes. Keep inductors away from items that generate magnetic fields such as speakers or coils. Mechanical considerations Be careful not to subject the inductors to excessive mechanical shocks. I finductors are dropped on the floor or a hard surface they should not be used. When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature: 30°C or below Humidity: 30% to 70% The ambient temperature must be kept -5°C to +40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery. Inductor should be kept where no chlorine or sulfur exists in the air.
Technical considerations	Storage If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.


Wire–wound Metal Power Inductors MCOIL[™] LBDN series for Telecommunications Infrastructure and Industrial Equipment


Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.


PART		3			*Operating	Temp ·	-40~125℃(Including self-generated heat)	REFLOW
	NOMBE	<u>х</u>			operating	remp	To The other and	
L B	D 1	N D 2 0 2 0 2 3	<u>кк</u> т 1 4 5	R 6	0 M N 7 (8		(9)	
 Series 								
Coc (1)(2)(LBD	(3)(4)	Wire-wound Metal Power Induc	tor for Telecommu	nications	Infrastructur	re and In	dustrial Equipment	
(1) Produ	ict Grou	p			(3) Type			
Code L		Inductors			Code D		Metal Wire-wound (Drum type)	
		Inductors			0		metal wire wound (Druin type)	
(2) Categ	ory				(4) Featu	res, Char	racteristics	
Code	F	Recommended equipment	Quality Grade		Code			
в	Telec	ommunications Infrastructure	2		Ν		Standard Power choke	
Ь		and Industrial Equipment	2					
②Feature	es				⑤Packag	ging		
Cod	de	Feature			Coc		Packaging	
D)	Bottom electrode (Ag>	solder)		T		Taping	
3Dimens	sions (L				6 Nomina		ance	
Coc		Dimensions(L×W)[mm]		Coc		Nominal inductance[µH]	
202		2.0 × 2.0			(exam	-		
303		3.0 × 3.0					0.47	
404	40	4.0 × 4.0			1R 4R		1.0	
④Dimens	sions (L)				4R ※R=Dec		4.7	
4 Dimens		Dimensions (H) [m	m]		211-Dec		inc.	
Kł		1.0			(7)Inducta	ance tole	rance	
Mł		1.2			Coc	1	Inductance tolerance	
Wł		2.0			М		±20%	
					N		±30%	
								_
					8 Special			_
					Coc		Special code	
					F		Ferrite coating	
					M		Metal coating	
					(9)Interna	l code		

STANDARD EXTERNAL DIMENSIONS

Туре	А	В	С
2020	0.65	1.35	2.0
3030	0.8	2.2	2.7
4040	1.2	2.8	3.7
			Unit:mm

Туре	L	W	Н	e	f	Standard quantity [pcs] Taping
2020KK	2.0 ± 0.15 (0.079 ± 0.006)	2.0±0.15 (0.079±0.006)	1.0 max (0.039 max)	0.50 ± 0.2 (0.02 ± 0.008)	1.25±0.2 (0.049±0.008)	2500
2020MK	2.0 ± 0.15 (0.079 ± 0.006)	2.0 ± 0.15 (0.079 ± 0.006)	1.2 max (0.047 max)	0.50 ± 0.2 (0.02 ± 0.008)	1.25 ± 0.2 (0.049 ± 0.008)	2500
3030KK	3.0±0.1 (0.118±0.004)	3.0±0.1 (0.118±0.004)	1.0 max (0.039 max)	0.90±0.2 (0.035±0.008)	1.9±0.2 (0.075±0.008)	2000
3030MK	3.0±0.1 (0.118±0.004)	3.0±0.1 (0.118±0.004)	1.2 max (0.047 max)	0.90±0.2 (0.035±0.008)	1.9±0.2 (0.075±0.008)	2000
4040MK	4.0±0.2 (0.157±0.008)	4.0±0.2 (0.157±0.008)	1.2 max (0.047 max)	1.1±0.2 (0.043±0.008)	2.5±0.2 (0.098±0.008)	1000
4040WK	4.0±0.2 (0.157±0.008)	4.0±0.2 (0.157±0.008)	2.0 max (0.079 max)	1.1±0.2 (0.043±0.008)	2.5±0.2 (0.098±0.008)	700

Unit:mm(inch)

PART NUMBER

· All the Wire-wound Metal Power Inductors of the catalog lineup are RoHS compliant.

Notes)

• The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.

The products are for Telecommunications infrastructure and Industrial equipment.

Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,

and please review and approve the product specifications before ordering.

2020KK type [Thickness: 1.0mm max]

	THICKNESS. I.OHIIII HIAX						
					Rated curren		
New part number	Old part number	Nominal inductance	Inductance tolerance	DC Resistance	Saturation current	Temperature rise current	Measuring
	(for reference)	[μH]		[Ω](max.)	Idc1	Idc2	frequency[MHz]
					Max (Typ)	Max (Typ)	
LBDND2020KKTR47MM	MDKK2020TR47MM 8	0.47	±20%	0.046	3,500 (4,150)	2,200 (2,500)	1
LBDND2020KKTR68MM	MDKK2020TR68MM 8	0.68	±20%	0.060	3,200 (3,650)	2,000 (2,100)	1
LBDND2020KKT1R0MM	MDKK2020T1R0MM 8	1.0	±20%	0.085	2,900 (3,400)	1,700 (1,900)	1
LBDND2020KKT1R5MM	MDKK2020T1R5MM 8	1.5	±20%	0.133	1,900 (2,250)	1,350 (1,500)	1
LBDND2020KKT2R2MM	MDKK2020T2R2MM 8	2.2	±20%	0.165	1,650 (1,950)	1,200 (1,350)	1
LBDND2020KKT3R3MM	MDKK2020T3R3MM 8	3.3	±20%	0.275	1,300 (1,550)	940 (1,050)	1
LBDND2020KKT4R7MM	MDKK2020T4R7MM 8	4.7	±20%	0.435	1,050 (1,250)	750 (850)	1
LBDND2020KKT100MM	MDKK2020T100MM 8	10	±20%	0.690	750 (900)	630 (680)	1

Absolute maximum voltage:DC20V

2020MK type [Thickness: 1.2mm max]

					Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	Nominal inductance [μH]	Inductance tolerance	DC Resistance [Ω](max.)	Saturation current Idc1		Measuring frequency[MHz]
					Max (Typ)	Max (Typ)	
LBDND2020MKTR47MM	MDMK2020TR47MM 8	0.47	±20%	0.046	4,200 (4,800)	2,300 (2,450)	1
LBDND2020MKTR68MM	MDMK2020TR68MM 8	0.68	±20%	0.058	3,500 (4,100)	2,000 (2,200)	1
LBDND2020MKT1R0MM	MDMK2020T1R0MM 8	1.0	±20%	0.064	2,550 (2,900)	1,900 (2,050)	1
LBDND2020MKT1R5MM	MDMK2020T1R5MM 8	1.5	±20%	0.086	2,000 (2,300)	1,650 (1,750)	1
LBDND2020MKT2R2MM	MDMK2020T2R2MM 8	2.2	±20%	0.109	1,750 (2,000)	1,450 (1,550)	1
LBDND2020MKT3R3MM	MDMK2020T3R3MM 8	3.3	±20%	0.178	1,350 (1,550)	1,150 (1,200)	1
LBDND2020MKT4R7MM	MDMK2020T4R7MM 8	4.7	±20%	0.242	1,150 (1,300)	950 (1,050)	1

Absolute maximum voltage:DC20V

3030KK type [Thickness: 1.0mm max]

					Rated curren	t ※)[mA]	Macouring
New part number	Old part number N (for reference)	Nominal inductance [μH] Inductance toleranc	Inductance tolerance	DC Resistance [Ω](max.)	Saturation current Idc1 Max (Typ)	Temperature rise current Idc2 Max (Typ)	Measuring frequency[MHz]
LBDND3030KKTR47MM	MDKK3030TR47MM 8	0.47	±20%	0.039	5,400 (6,500)	3,900 (4,500)	1
LBDND3030KKT1R0MM	MDKK3030T1R0MM 8	1.0	±20%	0.086	4,400 (5,200)	2,400 (2,800)	1
LBDND3030KKT1R5MM	MDKK3030T1R5MM 8	1.5	±20%	0.100	3,000 (3,500)	2,100 (2,400)	1
LBDND3030KKT2R2MM	MDKK3030T2R2MM 8	2.2	±20%	0.144	2,500 (3,000)	1,900 (2,200)	1
LBDND3030KKT3R3MM	MDKK3030T3R3MM 8	3.3	±20%	0.248	2,000 (2,400)	1,350 (1,500)	1
LBDND3030KKT4R7MM	MDKK3030T4R7MM 8	4.7	±20%	0.345	1,700 (2,000)	1,150 (1,300)	1
LBDND3030KKT6R8MM	MDKK3030T6R8MM 8	6.8	±20%	0.437	1,400 (1,700)	1,000 (1,150)	1
LBDND3030KKT100MM	MDKK3030T100MM 8	10	±20%	0.575	1,100 (1,300)	850 (1,000)	1

Absolute maximum voltage: DC20V

• 3030MK type 【Thickness:1.2mm max】

					Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	Nominal inductance [µ H] Inductance	Inductance tolerance	DC Resistance [Ω](max.)	Saturation current Idc1 Max (Typ)	Temperature rise current Idc2 Max (Typ)	Measuring frequency[MHz]
LBDND3030MKTR30MM	MDMK3030TR30MM 8	0.30	±20%	0.020	7,600 (9,200)	5,500 (6,400)	1
LBDND3030MKTR33MM	MDMK3030TR33MM 8	0.33	±20%	0.020	6,400 (8,700)	5,500 (6,400)	1
LBDND3030MKTR47MM	MDMK3030TR47MM 8	0.47	±20%	0.027	6,300 (7,500)	4,700 (5,500)	1
LBDND3030MKT1R0MM	MDMK3030T1R0MM 8	1.0	±20%	0.050	4,300 (5,100)	3,300 (3,900)	1
LBDND3030MKT1R5MM	MDMK3030T1R5MM 8	1.5	±20%	0.074	3,400 (4,100)	2,500 (3,000)	1
LBDND3030MKT2R2MM	MDMK3030T2R2MM 8	2.2	±20%	0.112	2,800 (3,600)	2,100 (2,400)	1
LBDND3030MKT3R3MM	MDMK3030T3R3MM 8	3.3	±20%	0.173	2,100 (2,700)	1,650 (1,900)	1
LBDND3030MKT4R7MM	MDMK3030T4R7MM 8	4.7	±20%	0.263	1,800 (2,300)	1,350 (1,550)	1

Absolute maximum voltage: DC20V

%) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

※1-1) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.0mm copper thickness: 0.035mm, board size: 110 × 30 × 1.0mm, land size: 12.6 × 19.6mm). (at 20°C)

※1-2) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.6mm copper thickness: 0.050mm, board size: 100 × 100 × 1.6mm, land size: 14.6 × 43mm). (at 20°C)

※1-3) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.6mm copper thickness: 0.050mm, board size: 100 × 100 × 1.6mm, land size: 44.5 × 90mm). (at 20°C)

※) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

※1−1) 2020KK, 2020MK type

※1-2) 3030KK, 3030MK type

※1-3) 4040MK, 4040WK type

PART NUMBER

4040MK F type	【Thickness:1.2mm max】						
					Rated curren	t ※)[mA]	
New part number	Old part number	Nominal inductance	Inductance tolerance	DC Resistance	Saturation current	Temperature rise current	Measuring
	(for reference)	[μH]		[Ω](max.)	Idc1	Idc2	frequency[kHz]
					Max (Typ)	Max (Typ)	
LBDND4040MKTR47MF	MDMK4040TR47MF 8	0.47	±20%	0.029	7,500 (10,000)	4,600 (5,400)	100
LBDND4040MKT1R0MF	MDMK4040T1R0MF 8	1.0	±20%	0.047	5,200 (7,500)	3,500 (4,200)	100
LBDND4040MKT1R2MF	MDMK4040T1R2MF 8	1.2	±20%	0.047	4,200 (6,200)	3,500 (4,200)	100
LBDND4040MKT1R5MF	MDMK4040T1R5MF 8	1.5	±20%	0.065	3,700 (5,400)	3,300 (3,600)	100
LBDND4040MKT2R2MF	MDMK4040T2R2MF 8	2.2	±20%	0.092	3,200 (4,500)	2,500 (2,900)	100
	Absolute maximum voltag	ge : DC25V					

•4040MK type 【Thickness:1.2mm max】

					Rated curren	t ※)[mA]	Measuring frequency[MHz]
New part number	Old part number (for reference)	Nominal inductance [µ H] Inductance tolerand	Inductance tolerance	DC Resistance [Ω](max.)	Saturation current Idc1 Max (Typ)	Temperature rise current Idc2 Max (Typ)	
LBDND4040MKTR68MM	MDMK4040TR68MM 8	0.68	±20%	0.029	6,700 (7,800)	5,000 (5,700)	1
LBDND4040MKT1R0MM	MDMK4040T1R0MM 8	1.0	±20%	0.036	5,000 (6,200)	4,500 (5,100)	1
LBDND4040MKT1R5MM	MDMK4040T1R5MM 8	1.5	±20%	0.065	4,500 (5,600)	3,200 (3,600)	1
LBDND4040MKT2R2MM	MDMK4040T2R2MM 8	2.2	±20%	0.079	3,800 (4,500)	2,800 (3,200)	1
LBDND4040MKT3R3MM	MDMK4040T3R3MM 8	3.3	±20%	0.130	3,200 (4,000)	2,200 (2,500)	1
LBDND4040MKT4R7MM	MDMK4040T4R7MM 8	4.7	±20%	0.160	2,500 (3,000)	1,900 (2,200)	1
LBDND4040MKT6R8MM	MDMK4040T6R8MM 8	6.8	±20%	0.230	1,900 (2,200)	1,600 (1,800)	1
LBDND4040MKT100MM	MDMK4040T100MM 8	10	±20%	0.330	1700 (2,000)	1,400 (1,600)	1

Absolute maximum voltage:DC25V

4040WK type	【Thickness:2.0mm max】						
					Rated curren		
New part number	Old part number	Nominal inductance	Inductance tolerance	DC Resistance	Saturation current	Temperature rise current	Measuring
	(for reference)	[μH]		[Ω](max.)	Idc1	Idc2	frequency[MHz]
					Max (Typ)	Max (Typ)	
LBDND4040WKTR56NM	MDWK4040TR56NM 8	0.56	±20%	0.016	9,000 (13,000)	6,500 (7,500)	1
LBDND4040WKTR68MM	MDWK4040TR68MM 8	0.68	±20%	0.016	8,000 (12,000)	7,300 (8,300)	1
LBDND4040WKT1R0MM	MDWK4040T1R0MM 8	1.0	±20%	0.027	7,000 (9,400)	5,100 (5,800)	1
LBDND4040WKT1R5MM	MDWK4040T1R5MM 8	1.5	±20%	0.041	7,000 (9,400)	4,100 (4,700)	1
LBDND4040WKT2R2MM	MDWK4040T2R2MM 8	2.2	±20%	0.054	5,400 (7,500)	3,500 (4,000)	1
LBDND4040WKT3R3MM	MDWK4040T3R3MM 8	3.3	±20%	0.075	3,700 (5,200)	3,000 (3,300)	1
LBDND4040WKT4R7MM	MDWK4040T4R7MM 8	4.7	±20%	0.107	3,500 (5,000)	2,500 (2,800)	1
LBDND4040WKT6R8MM	MDWK4040T6R8MM 8	6.8	±20%	0.158	2,900 (4,000)	2,000 (2,300)	1
LBDND4040WKT100MM	MDWK4040T100MM 8	10	±20%	0.194	2,200 (3,100)	1,600 (1,900)	1

Absolute maximum voltage:DC25V

※) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

X1-1) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.0mm copper thickness: 0.035mm, board size: 110 × 30 × 1.0mm, land size: 12.6 × 19.6mm). (at 20°C)

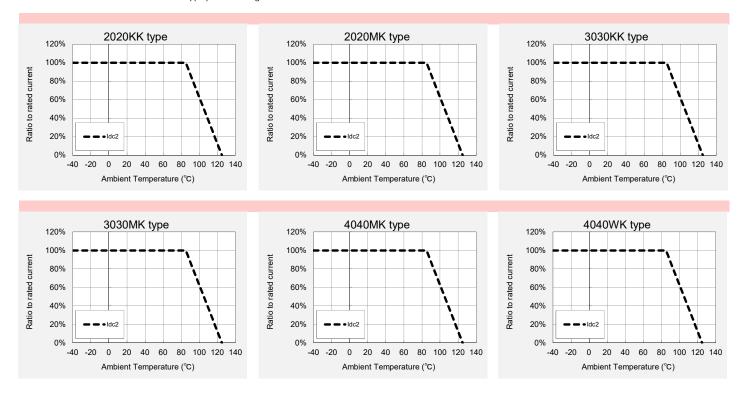
%1-2) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.6mm copper thickness: 0.050mm, board size: 100 × 100 × 1.6mm, land size: 14.6 × 43mm). (at 20°C)

※1-3) The temperature rise current value(ldc2) is the DC current value having temperature increase by 40°C, when mounted in FR4 High heat dissipation board (board thickness: 1.6mm copper thickness: 0.050mm, board size: 100 × 100 × 1.6mm, land size: 44.5 × 90mm). (at 20°C)

*) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

※1−1) 2020KK, 2020MK type

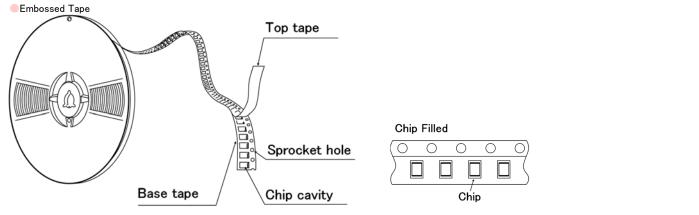
※1-2) 3030KK, 3030MK type


※1−3) 4040MK, 4040WK type

Derating of Rated Current

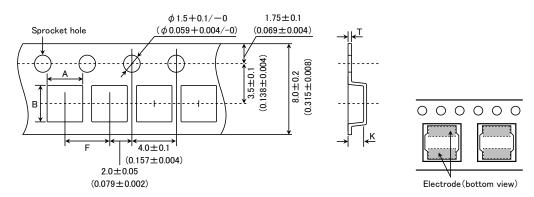
LBDN series

Derating of current is necessary for LBDN series depending on ambient temperature. Please refer to the chart shown below for appropriate derating of current.

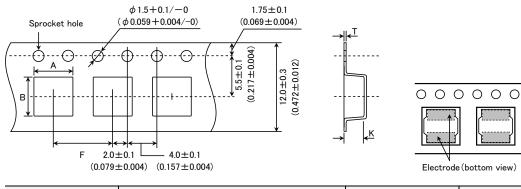


Wire-wound Metal Power Inductors MCOIL[™] LSDN/LCDN/LBDN/LLDN/LMDN series

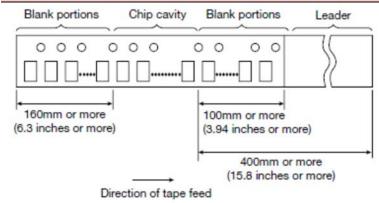
PACKAGING


1Minimum Quantity	
Туре	Standard Quantity [pcs]
туре	Tape & Reel
1616KK	2500
2020JE	
2020KK	2500
2020MK	
3030KK	2000
3030MK	2000
4040JE	1000
4040MK	1000
4040WK	700
5050PK	1000

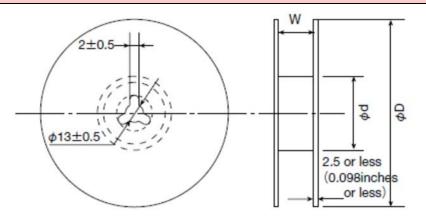
②Tape Material


3 Taping dimensions

Embossed tape 8mm wide (0.315 inches wide)

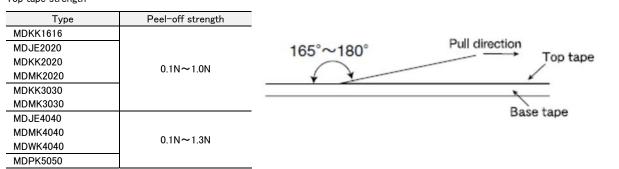

Туре	Chip	cavity	Insertion pitch	Tape thickness		
туре	A	В	F	Т	К	
1616KK	1.79 ± 0.1 (0.071 ± 0.004)	1.79±0.1 (0.071±0.004)	4.0±0.1 (0.157±0.004)	0.25 ± 0.05 (0.010 ± 0.002)	1.1 ± 0.1 (0.043 ± 0.004)	
2020JE 2020KK 2020MK	$2.2 \pm 0.1 \\ (0.102 \pm 0.004)$	2.2 ± 0.1 (0.102 \pm 0.004)	4.0±0.1 (0.157±0.004)	0.25 ± 0.05 (0.009 ± 0.002)	1.3 ± 0.1 (0.051 ± 0.004)	
3030KK 3030MK	3.2 ± 0.1 (0.126 ± 0.004)	3.2 ± 0.1 (0.126 ± 0.004)	4.0±0.1 (0.157±0.004)	0.3±0.05 (0.012±0.002)	1.4 ± 0.1 (0.055 ± 0.004)	
	•				Unit:mm(inch)	

Embossed tape 12mm wide (0.47 inches wide)



Туре	Chip	cavity	Insertion pitch	Tape thickness	
туре	A	В	F	Т	К
4040JE	4.3±0.1	4.3±0.1	8.0±0.1	0.3 ± 0.05	1.6 ± 0.1
4040MK	(0.169 ± 0.004)	(0.169 ± 0.004)	(0.315 ± 0.004)	(0.012 ± 0.002)	(0.063 ± 0.004)
4040WK	4.3±0.1 (0.169±0.004)	4.3 ± 0.1 (0.169±0.004)	8.0±0.1 (0.315±0.004)	0.3±0.05 (0.012±0.002)	2.3±0.1 (0.091±0.004)
5050PK	5.25±0.1 (0.207±0.004)	5.25±0.1 (0.207±0.004)	8.0 ± 0.1 (0.315 ± 0.004)	0.3 ± 0.1 (0.012 ± 0.004)	1.6±0.1 (0.063±0.004)
	•		•		Unit:mm(inch)

4Leader and Blank portion



T	Reel size (Reference values)					
Туре	φD	Ød	W			
1616KK						
2020JE						
2020KK	180 ± 0.5	60 ± 1.0	10.0 ± 1.5			
2020MK	(7.087±0.019)	(2.36 ± 0.04)	(0.394 ± 0.059)			
3030KK						
3030MK						
4040JE						
4040MK	180±3.0	60 ± 2.0	14.0 ± 1.5			
4040WK	(7.087±0.118)	(2.36 ± 0.08)	(0.551 ± 0.059)			
5050PK						
	· ·		Unit:mm(inch)			

6 Top Tape Strength

Top tape strength

Wire-wound Metal Power Inductors MCOIL[™] LBDN series for Telecommunications Infrastructure and Industrial Equipment Wire-wound Metal Power Inductors MCOIL[™] LMDN series for Medical Devices classified as GHTF Class C (Japan Class III)

RELIABILITY DATA

1. Operating Tempe	rature Range
Specified Value	$-40 \sim +125^{\circ} C ($ Including self-generated heat $)$
Test Methods and Remarks	Including self-generated heat

2. Storage Tempera	2. Storage Temperature Range			
Specified Value	-40~+85°C			
Test Methods and Remarks	-5 to 40°C for the product with taping.			

3. Rated current	
Specified Value	Within the specified tolerance

4. Inductance		
Specified Value	Within the specified tolerance	
Test Methods and Remarks	Measuring equipment Measuring frequency	: LCR Meter(HP 4285A or equivalent) : 1MHz 1V (4040F:100kHz 1V)

5. DC Resistance			
Specified Value	Within the specified tolerance		
Test Methods and Remarks	Measuring equipment : DC ohmmeter (HIOKI 3227 or equivalent)		

6. Self resonance frequency			
Specified Value	-		

7. Temperature characteristic		
Specified Value	Inductance change : Within $\pm 10\%$	
Test Methods and Remarks	Measurement of inductance shall be taken at temperature range within $-40^{\circ}C \sim +125^{\circ}C$. With reference to inductance value at $+20^{\circ}C$., change rate shall be calculated.	

8. Resistance to fl	exure of substrate	
Specified Value	No damage	
Test Methods and Remarks	The test samples shall be s until deflection of the test Test board size Test board material Solder cream thickness	w. As illustrated below, apply force in the direction of the arrow indicating Force Rod $10 \frac{20}{R_{230}}$ Board R5 $45\pm 2mm$ $45\pm 2mm$

9. Insulation resistance : between wires				
Specified Value	-			
10. Insulation resistance : between wire and core				

_

Specified Value

11. Withstanding voltage : between wire and co			
Specified Value	-		

12. Adhesion of terminal electrode					
Specified Value	Shall not come off PC board				
	The test samples shall be soldered to the test board by the reflow.				
Test Methods and	Applied force	: 10N to X and Y directions.			
Remarks	Duration : 5s.				
	Solder cream thickness	: 0.1mm.			

13. Resistance to vibration				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	The test samples shall be soldered to the test board by the reflow. Then it shall be submitted to below test conditions. Frequency Range 10~55Hz			
Test Methods	Total Amplitude	1.5mm (May not exceed acceleration 196m/s ²)		
and Remarks	Sweeping Method	10Hz to 55Hz to 10Hz for 1min.		
and Remarks	Time	X Y For 2 hours on each X, Y, and Z axis. Z		
	Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.			

14. Solderability				
Specified Value	At least 90% of surface of terminal electrode is covered by new solder.			
	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux : Ethanol solution containing rosin 25%.			
Test Methods and Remarks	Solder Temperature	245±5°C		
Remarks	Time	5±1.0 sec.		
	XImmersion depth : All sides of mounting terminal shall be immersed.			

15. Resistance to soldering heat		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.	
Test Methods and Remarks	The test sample shall be exposed to reflow oven at $230\pm5^{\circ}$ C for 40 seconds, with peak temperature at $260\pm5^{\circ}$ C for 5 seconds, 2 times.Test board material: glass epoxy-resinTest board thickness: 1.0mm	

16. Thermal shock				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	The test samples shall be soldered to the test board by the reflow. T time by step 1 to step 4 as shown in below table in sequence. The t Conditions of 1 cycle			he test samples shall be placed at specified temperature for specified emperature cycle shall be repeated 1000 cycles.
Test Methods	Step	Temperature (°C)	Duration (min)	
and Remarks	1	-40 ± 3	30±3	
	2	Room temperature	Within 3	
	3	$+85\pm2$	30 ± 3	
	4	Room temperature	Within 3	

17. Damp heat			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
Test Methods	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.		
and Remarks	Temperature	60±2°C	
	Humidity	90~95%RH	
	Time	1000+24/-0 hour	

18. Loading under	damp heat		
Specified Value	Inductance change : No significant abnor	Within $\pm 10\%$ mality in appearance.	
Test Methods		•	board by the reflow. ic oven set at specified temperature and humidity and applied the rated current continuously
and Remarks	Temperature Humidity	60±2℃ 90~95%RH	
	Applied current	Rated current $1000+24/-0$ hour	

19. Low temperatur	19. Low temperature life test			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods	The test samples sha in below table.	ll be soldered to the test b	board by the reflow. After that, the test samples shall be placed at test conditions as shown	
and Remarks	Temperature	-40±2°C		
	Time	1000+24/-0 hour		

20. High temperature life test	
Specified Value	-

21. Loading at high	temperature life test		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
Test Methods		all be soldered to the test all be placed in thermosta	board by the reflow. tic oven set at specified temperature and applied the rated current continuously as shown
and Remarks	Temperature	85±2°C	
	Applied current	Rated current	
	Time	1000 + 24 / -0 hour	

22. Standard condition		
Specified Value	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity. When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of 20±2°C of temperature, 65±5% relative humidity. Inductance is in accordance with our measured value.	

TAIYO YUDEN

Wire-wound Metal Power Inductors MCOIL[™] LSDN/LCDN/LBDN/LLDN/LMDN series

PRECAUTIONS

	◆Verification of operating environment, electrical rating and performance
	 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe soci ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations an should be clearly differentiated from components used in general purpose applications.
Precautions	 When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurou acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environment conditions.
	♦ Operating Current (Verification of Rated current)
	1. The operating current including inrush current for inductors must always be lower than their rated values.
	2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
	◆Temperature rise
	Temperature rise of power choke coil depends on the installation condition in end products.
	Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design	
Precautions	 Land pattern design 1. Please refer to a recommended land pattern. 2. There is stress, which has been caused by distortion of a PCB, to the inductor. 3. Please consider the arrangement of parts on a PCB.
Technical considerations	 Land pattern design Surface Mounting I. Mounting and soldering conditions should be checked beforehand. 2. Applicable soldering process to this products is reflow soldering only. 3. Please use the recommended land pattern. If a PCB is designed with other dimensions, defective soldering and stress to a product may occur due to misalignment. The performance of the product may not be brought out. If an adopted land pattern is different from the recommended land pattern, if a PCB is designed with other dimensions, defective soldering and stress to a product may occur due to misalignment. The performance of the product may not be brought out. If an adopted land pattern is different from the recommended land pattern, stress to the product may cause cracks or defective electrical characteristics of the product wilt taking on responsibility. 4. As coefficients of thermal expansion between an inductor and a PCB differs, cracks may occur on a core when thermal stress is applied to them after mounting an inductor. (Please refer to the drawings below.) Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the pros and cons of adoption of this product and please judge the prosend cons of adoption of this product and please judge the prosend cons of adoption of this product and please judge the prosend cons of adoption of this product and please judge the prosend cons of adoption of this product the king on responsibility. 5. SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection. When splitting the PC board after mounting

3. Considerations	tions for automatic placement			
Precautions	 Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 			
	 Adjustment of mounting machine 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. 2. Stress may be applied to a product with a warp or a twist in handling of the product. Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. 			
Technical considerations		Twist>		

4. Soldering			
Precautions	 Reflow soldering Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. The product shall be used reflow soldering only. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. Lead free soldering When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. 		
Technical considerations	Reflow soldering If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) 300 400 50 150 150 150 150 100 90±30sec 300[±]10sec 30[±]10sec 30[±]200^c min 		

5. Cleaning	5. Cleaning		
Precautions	 Cleaning conditions 1. Washing by supersonic waves shall be avoided. 		
Technical considerations	 Cleaning conditions 1. If washed by supersonic waves, the products might be broken. 		

6. Handling	
Precautions	 Handling Keep the product away from all magnets and magnetic objects. Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations Please do not give the product any excessive mechanical shocks. Please do not add any shock and power to a product in transportation. Pick-up pressure Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. Packing Please avoid accumulation of a packing box as much as possible. Board mounting There shall be no pattern or via between terminals at the bottom of product.
Technical considerations	 Handling There is a case that a characteristic varies with magnetic influence. Breakaway PC boards (splitting along perforations) The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. Mechanical considerations There is a case to be damaged by a mechanical shock. There is a case to be broken by the handling in transportation. Pick-up pressure Damage and a characteristic can vary with an excessive shock or stress. Packing If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products. Board mounting If there is pattern or via between terminals at the bottom of product, it may cause characteristics change. If components which are located in peripheral of product make contact with surface (top, side) of product, it may cause damage or characteristics change.

7. Storage conditions	
Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Storage conditions Ambient temperature : -5~40°C Humidity : Below 70% RH The recommended ambient temperature is below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	 Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

TAIYO YUDEN