Please read this notice before using the TAIYO YUDEN products.

Product Information in this Catalog

Product information in this catalog is as of March 2023. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment for consumer (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets, or the equipment approved separately by TAIYO YUDEN.

TAIYO YUDEN has the product series intended for use in the following equipment. Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

Application	Product Series		Quality Grade*3
Application	Equipment ⁺¹	Category (Part Number Code *2)	
Automotive	Automotive Electronic Equipment (POWERTRAIN, SAFETY)	A	1
Automotive	Automotive Electronic Equipment (BODY & CHASSIS, INFOTAINMENT)	С	2
Industrial	Telecommunications Infrastructure and Industrial Equipment	В	2
Medical	Medical Devices classified as GHTF Class C (Japan Class III)	Μ	2
Medical	Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)	L	3
Consumer	General Electronic Equipment	S	3
	Only for Mobile Devices *4	E	4

*Notes:1. Based on the general specifications required for electronic components for such equipment, which are recognized by TAIYO YUDEN, the use of each product series for the equipment is recommended. Please be sure to contact TAIYO YUDEN before using our products for equipment other than those covered by the product series.

2. On each of our part number, the 2nd code from the left is a code indicating the "Category" as shown in the above table. For details, please check the explanatory materials regarding the part numbering system of each of our products.

3. Each product series is assigned a "Quality Grade" from 1 to 4 in order of higher quality. Please do not incorporate a product into any equipment with a higher Quality Grade than the Quality Grade of such product without the prior written consent of TAIYO YUDEN.

4. The applications covered by this product series are limited to mobile devices (smartphone, tablet PC, smartwatch, handheld game console, etc.) among general electronic equipment for consumer. The design, specifications and operating environment, etc. differ from those of the product series for "General Electronic Equipment" (Category: S), so please check the individual product specification sheets for details. The product series for "General Electronic Equipment" (Category: S) can also be used for mobile devices.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

(1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)

(2) Traffic signal equipment

(3) Disaster prevention equipment, crime prevention equipment

- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, data-processing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.)

- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2
- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)

(5) Undersea equipment (submarine repeating equipment, etc.)

(6) Military equipment

(7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

- *Notes:1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
 - 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

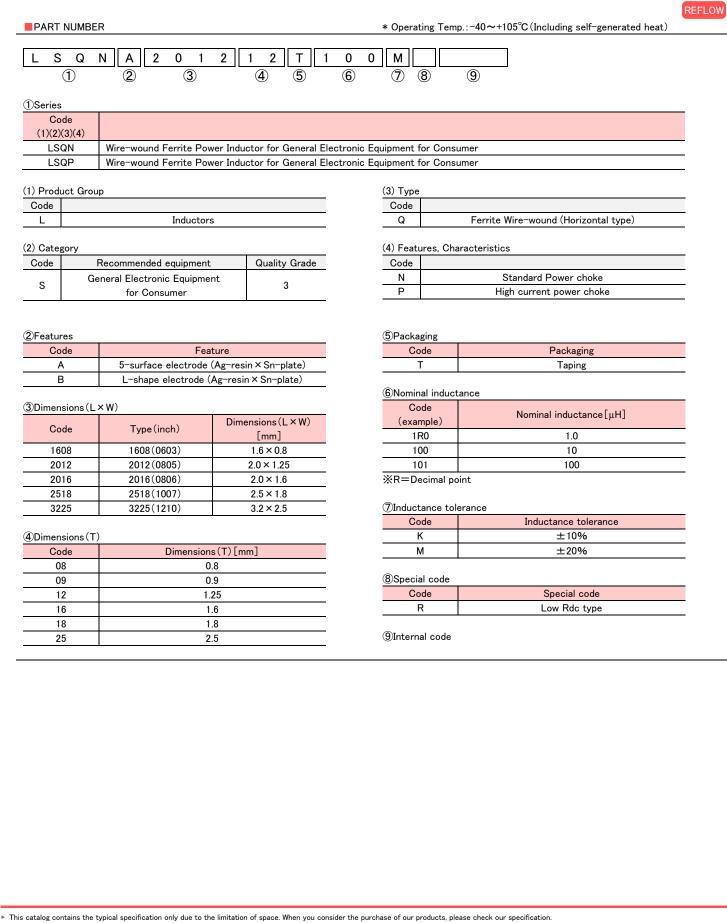
Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

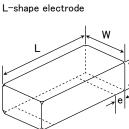
Please note that the scope of warranty for our products is limited to the delivered our products themselves conforming to the product specifications specified in the individual product specification sheets, and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement, provided, however, that our products shall be used for general-purpose and standard use in the equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN's Official Sales Channel


The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.


Wire-wound Ferrite Power Inductors LSQN/LSQPA series for General Electronic Equipment for Consumer

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

5-surface electrode Т Т

т

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

•Applicable soldering process	to these produc	ts is reflow s	oldering only	
	Туре	А	В	С
	B1608	0.55	0.7	1.0
С	A2012	0.60	1.0	1.45
	A2016	0.60	1.0	1.8
	A2518	0.60	1.5	2.0
A B A	A3225	0.85	1.7	2.7
				11.1

Unit:mm

Туре		w	т		Standard qu	antity[pcs]
туре	L	vv	1	e	Paper tape	Embossed tape
B160808	1.6±0.2	0.8±0.2	0.8±0.2	0.45 ± 0.15		3000
B100000	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.031 ± 0.008)	(0.016 ± 0.006)	_	3000
A201209	2.0±0.2	1.25±0.2	0.9±0.1	0.5 ± 0.2	4000	
A201209	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.035 ± 0.004)	(0.020 ± 0.008)	4000	_
A 001010	2.0±0.2	1.25±0.2	1.25±0.2	0.5±0.2		3000
A201212	(0.079 ± 0.008)	(0.049 ± 0.008)	(0.049 ± 0.008)	(0.020 ± 0.008)	_	3000
A201616	2.0±0.2	1.6±0.2	1.6±0.2	0.5 ± 0.2		2000
A201010	(0.079 ± 0.008)	(0.063 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.008)	_	2000
A051010	2.5±0.2	1.8±0.2	1.8±0.2	0.5 ± 0.2		2000
A251818	(0.098 ± 0.008)	(0.071 ± 0.008)	(0.071 ± 0.008)	(0.020 ± 0.008)	_	2000
4000505	3.2±0.2	2.5±0.2	2.5±0.2	0.6±0.3		1000
A322525	(0.126 ± 0.008)	(0.098 ± 0.008)	(0.098 ± 0.008)	(0.024 ± 0.012)	_	1000
	•	•	•	•		Unit:mm(inch)

1608(0603) type									
	Old part number		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
New part number	(for reference)	EHS	[µ H]	Inductance tolerance	frequency	$[\Omega](\pm 30\%)$	Saturation current	Temperature rise current	frequency[MHz]
					[MHz] (min.)		Idc1	Idc2	
LSQNB160808T1R0M	CBMF1608T1R0M	RoHS	1.0	±20%	100	0.09	290	770	7.96
LSQNB160808T2R2M	CBMF1608T2R2M	RoHS	2.2	±20%	80	0.17	190	560	7.96
LSQNB160808T3R3M	CBMF1608T3R3M	RoHS	3.3	±20%	60	0.22	170	500	7.96
LSQNB160808T4R7M	CBMF1608T4R7M	RoHS	4.7	±20%	45	0.24	145	470	7.96
LSQNB160808T100K	CBMF1608T100K	RoHS	10	±10%	32	0.36	115	380	2.52
LSQNB160808T100M	CBMF1608T100M	RoHS	10	±20%	32	0.36	115	380	2.52
LSQNB160808T220K	CBMF1608T220K	RoHS	22	±10%	16	1.0	70	230	2.52
LSQNB160808T220M	CBMF1608T220M	RoHS	22	±20%	16	1.0	70	230	2.52
LSQNB160808T470K	CBMF1608T470K	RoHS	47	±10%	11	2.5	50	140	2.52
LSQNB160808T470M	CBMF1608T470M	RoHS	47	±20%	11	2.5	50	140	2.52

2012(0805) type

	Old part number		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
New part number	(for reference)	EHS	[µ H]	Inductance tolerance	frequency [MHz](min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
LSQNA201212T1R0M	CB 2012T1R0M	RoHS	1.0	±20%	100	0.15	500	900	7.96
LSQNA201212T2R2M	CB 2012T2R2M	RoHS	2.2	±20%	80	0.23	410	770	7.96
LSQNA201212T3R3M	CB 2012T3R3M	RoHS	3.3	±20%	55	0.30	330	650	7.96
LSQNA201212T4R7M	CB 2012T4R7M	RoHS	4.7	±20%	45	0.40	300	580	7.96
LSQNA201212T6R8M	CB 2012T6R8M	RoHS	6.8	±20%	38	0.47	250	540	7.96
LSQNA201212T100K	CB 2012T100K	RoHS	10	±10%	32	0.70	190	440	2.52
LSQNA201212T100M	CB 2012T100M	RoHS	10	±20%	32	0.70	190	440	2.52
LSQNA201212T100KR	CB 2012T100KR	RoHS	10	±10%	32	0.50	200	520	2.52
LSQNA201212T100MR	CB 2012T100MR	RoHS	10	±20%	32	0.50	200	520	2.52
LSQNA201212T150K	CB 2012T150K	RoHS	15	±10%	28	1.3	170	320	2.52
LSQNA201212T150M	CB 2012T150M	RoHS	15	±20%	28	1.3	170	320	2.52
LSQNA201212T220K	CB 2012T220K	RoHS	22	±10%	16	1.7	135	280	2.52
LSQNA201212T220M	CB 2012T220M	RoHS	22	±20%	16	1.7	135	280	2.52
LSQNA201212T470K	CB 2012T470K	RoHS	47	±10%	11	3.7	90	190	2.52
LSQNA201212T470M	CB 2012T470M	RoHS	47	±20%	11	3.7	90	190	2.52
LSQNA201212T680K	CB 2012T680K	RoHS	68	±10%	10	6.0	70	140	2.52
LSQNA201212T680M	CB 2012T680M	RoHS	68	±20%	10	6.0	70	140	2.52
LSQNA201212T101K	CB 2012T101K	RoHS	100	±10%	8	7.0	60	130	0.796
LSQNA201212T101M	CB 2012T101M	RoHS	100	±20%	8	7.0	60	130	0.796

					Self-resonant		Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	EHS	Nominal inductance [μΗ]	Inductance tolerance	frequency [MHz](min.)	DC Resistance $[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current Ide2	Measuring frequency[MHz]
LSQPA201212T1R0M	CB C2012T1R0M	RoHS	1.0	±20%	100	0.19	700	840	7.96
LSQPA201212T2R2M	CB C2012T2R2M	RoHS	2.2	±20%	70	0.33	530	640	7.96
LSQPA201212T4R7M	CB C2012T4R7M	RoHS	4.7	±20%	45	0.50	360	520	7.96
LSQPA201212T100K	CB C2012T100K	RoHS	10	±10%	40	1.2	240	340	2.52
LSQPA201212T100M	CB C2012T100M	RoHS	10	±20%	40	1.2	240	340	2.52
LSQPA201212T220K	CB C2012T220K	RoHS	22	±10%	16	3.7	170	190	2.52
LSQPA201212T220M	CB C2012T220M	RoHS	22	±20%	16	3.7	170	190	2.52
LSQPA201212T470K	CB C2012T470K	RoHS	47	±10%	11	5.8	120	150	2.52
LSQPA201212T470M	CB C2012T470M	RoHS	47	±20%	11	5.8	120	150	2.52

			N		Self-resonant	DO D	Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	EHS	Nominal inductance [Inductance tolerance	frequency [MHz](min.)	DC Resistance $[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current Ide2	Measuring frequency[MHz]
LSQNA201209T1R0M	CB L2012T1R0M	RoHS	1.0	±20%	100	0.15	620	950	0.1
LSQNA201209T2R2M	CB L2012T2R2M	RoHS	2.2	±20%	80	0.39	440	590	0.1
LSQNA201209T4R7M	CB L2012T4R7M	RoHS	4.7	±20%	45	0.66	275	490	0.1
LSQNA201209T100M	CB L2012T100M	RoHS	10	±20%	32	1.0	205	370	0.1
LSQNA201209T220M	CB L2012T220M	RoHS	22	±20%	23	2.1	150	250	0.1
LSQNA201209T470M	CB L2012T470M	RoHS	47	±20%	11	4.2	100	140	0.1

%) The saturation current value(Idc1) is the DC current value having inductance decrease down to 30% (at 20°C) %) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C.(at 20°C) %) The rated current value is following either Idc1 or Idc2, which is the lower one.

					Self-resonant		Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	EHS	Nominal inductance [µ H]	Inductance tolerance	frequency [MHz](min.)	DC Resistance $[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current	Measuring frequency[MHz]
LSQNA201616T1R0M	CB 2016T1R0M	RoHS	1.0	±20%	100	0.09	600	1,100	7.96
LSQNA201616T1R5M	CB 2016T1R5M	RoHS	1.5	±20%	80	0.11	550	1,000	7.96
LSQNA201616T2R2M	CB 2016T2R2M	RoHS	2.2	±20%	70	0.13	510	1,000	7.96
LSQNA201616T3R3M	CB 2016T3R3M	RoHS	3.3	±20%	55	0.20	400	800	7.96
LSQNA201616T4R7M	CB 2016T4R7M	RoHS	4.7	±20%	45	0.25	340	740	7.96
LSQNA201616T6R8M	CB 2016T6R8M	RoHS	6.8	±20%	38	0.35	300	600	7.96
LSQNA201616T100K	CB 2016T100K	RoHS	10	±10%	32	0.50	250	520	2.52
LSQNA201616T100M	CB 2016T100M	RoHS	10	±20%	32	0.50	250	520	2.52
LSQNA201616T150K	CB 2016T150K	RoHS	15	±10%	28	0.70	210	440	2.52
LSQNA201616T150M	CB 2016T150M	RoHS	15	±20%	28	0.70	210	440	2.52
LSQNA201616T220K	CB 2016T220K	RoHS	22	±10%	16	1.0	165	370	2.52
LSQNA201616T220M	CB 2016T220M	RoHS	22	±20%	16	1.0	165	370	2.52
LSQNA201616T330K	CB 2016T330K	RoHS	33	±10%	14	1.7	130	270	2.52
LSQNA201616T330M	CB 2016T330M	RoHS	33	±20%	14	1.7	130	270	2.52
LSQNA201616T470K	CB 2016T470K	RoHS	47	±10%	11	2.4	110	240	2.52
LSQNA201616T470M	CB 2016T470M	RoHS	47	±20%	11	2.4	110	240	2.52
LSQNA201616T680K	CB 2016T680K	RoHS	68	±10%	10	3.0	90	210	2.52
LSQNA201616T680M	CB 2016T680M	RoHS	68	±20%	10	3.0	90	210	2.52
LSQNA201616T101K	CB 2016T101K	RoHS	100	±10%	8	4.5	70	170	0.796
LSQNA201616T101M	CB 2016T101M	RoHS	100	±20%	8	4.5	70	170	0.796
			N N N N		Self-resonant		Rated curren		
New part number	Old part number (for reference)	EHS	Nominal inductance [Inductance tolerance	frequency [MHz](min.)	DC Resistance $[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current Ide2	Measuring frequency[MHz]
LSQPA201616T1R0M	CB C2016T1R0M	RoHS	1.0	±20%	100	0.10	1,100	1,100	7.96
LSQPA201616T1R5M	CB C2016T1R5M	RoHS	1.5	±20%	80	0.15	1,000	1,000	7.96
LSQPA201616T2R2M	CB C2016T2R2M	RoHS	2.2	±20%	70	0.20	750	720	7.96
LSQPA201616T3R3M	CB C2016T3R3M	RoHS	3.3	±20%	55	0.27	600	610	7.96
LSQPA201616T4R7M	CB C2016T4R7M	RoHS	4.7	±20%	45	0.37	550	530	7.96
LSQPA201616T6R8M	CB C2016T6R8M	RoHS	6.8	±20%	38	0.59	450	450	7.96
LSQPA201616T100K	CB C2016T100K	RoHS	10	±10%	32	0.82	380	350	2.52

LSQPA201616T150M CB C2016T150M RoHS 15 ±20% 28 1.2 300 300 LSQPA201616T220K CB C2016T220K RoHS 22 ±10% 16 1.8 250 240 250 LSQPA201616T220M CB C2016T220M **RoHS** 22 ±20% 16 1.8 240 33 2.8 LSQPA201616T330K CB C2016T330K **RoHS** ±10% 14 220 220 LSQPA201616T330M CB C2016T330M RoHS 33 ±20% 14 2.8 220 220 LSQPA201616T470K CB C2016T470K RoHS 47 ±10% 11 4.3 150 150 LSQPA201616T470M CB C2016T470M RoHS 47 ±20% 11 4.3 150 150 LSQPA201616T680K CB C2016T680K **RoHS** 68 ±10% 10 7.0 130 130 LSQPA201616T680M CB C2016T680M RoHS 68 ±20% 10 7.0 130 130 8.0 100 ±10% 110 110 LSQPA201616T101K CB C2016T101K **RoHS** 8 LSQPA201616T101M CB C2016T101M **RoHS** 100 ±20% 8 8.0 110 110

±20%

±10%

32

28

0.82

1.2

380

300

350

300

2.52

2.52

2.52

2.52

2.52

2.52

2.52

2.52

2.52

2.52

2.52

0.796

0.796

%) The saturation current value(Idc1) is the DC current value having inductance decrease down to 30%.(at 20°C)

RoHS

RoHS

10

15

%) The temperature rise current value(Idc2) is the DC current value having temperature increase by 40°C.(at 20°C)

%) The rated current value is following either Idc1 or Idc2, which is the lower one.

CB C2016T100M

CB C2016T150K

LSQPA201616T100M

LSQPA201616T150K

2518(1007) type									
New part number	Old part number (for reference)	EHS	Nominal inductance [µ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](±30%)	Rated curren Saturation current Idc1	t ※) [mA] Temperature rise current Ide2	Measuring frequency[MHz]
LSQNA251818T1R0M	CB 2518T1R0M	RoHS	1.0	±20%	100	0.06	1,200	1,500	7.96
LSQNA251818T1R5M	CB 2518T1R5M	RoHS	1.5	±20%	80	0.07	650	1,400	7.96
LSQNA251818T2R2M	CB 2518T2R2M	RoHS	2.2	±20%	68	0.09	510	1,300	7.96
LSQNA251818T3R3M	CB 2518T3R3M	RoHS	3.3	±20%	54	0.11	440	1,200	7.96
LSQNA251818T4R7MR	CB 2518T4R7MR	RoHS	4.7	±20%	46	0.10	310	1,200	7.96
LSQNA251818T4R7M	CB 2518T4R7M	RoHS	4.7	±20%	46	0.13	340	1,100	7.96
LSQNA251818T6R8M	CB 2518T6R8M	RoHS	6.8	±20%	38	0.15	270	930	7.96
LSQNA251818T100K	CB 2518T100K	RoHS	10	±10%	30	0.25	250	820	2.52
LSQNA251818T100M	CB 2518T100M	RoHS	10	±20%	30	0.25	250	820	2.52
LSQNA251818T150K	CB 2518T150K	RoHS	15	±10%	23	0.32	180	650	2.52
LSQNA251818T150M	CB 2518T150M	RoHS	15	±20%	23	0.32	180	650	2.52
LSQNA251818T220K	CB 2518T220K	RoHS	22	±10%	19	0.50	165	580	2.52
LSQNA251818T220M	CB 2518T220M	RoHS	22	±20%	19	0.50	165	580	2.52
LSQNA251818T330K	CB 2518T330K	RoHS	33	±10%	15	0.70	130	460	2.52
LSQNA251818T330M	CB 2518T330M	RoHS	33	±20%	15	0.70	130	460	2.52
LSQNA251818T470K	CB 2518T470K	RoHS	47	±10%	12	0.95	110	420	2.52
LSQNA251818T470M	CB 2518T470M	RoHS	47	±20%	12	0.95	110	420	2.52
LSQNA251818T680K	CB 2518T680K	RoHS	68	±10%	9.5	1.5	70	310	2.52
LSQNA251818T680M	CB 2518T680M	RoHS	68	±20%	9.5	1.5	70	310	2.52
LSQNA251818T101K	CB 2518T101K	RoHS	100	±10%	9.0	2.1	60	260	0.796
LSQNA251818T101M	CB 2518T101M	RoHS	100	±20%	9.0	2.1	60	260	0.796
LSQNA251818T151K	CB 2518T151K	RoHS	150	±10%	7.0	3.2	55	210	0.796
LSQNA251818T151M	CB 2518T151M	RoHS	150	±20%	7.0	3.2	55	210	0.796
LSQNA251818T221K	CB 2518T221K	RoHS	220	±10%	5.5	4.5	50	180	0.796
LSQNA251818T221M	CB 2518T221M	RoHS	220	±20%	5.5	4.5	50	180	0.796
LSQNA251818T331K	CB 2518T331K	RoHS	330	±10%	4.5	7.0	40	140	0.796
LSQNA251818T331M	CB 2518T331M	RoHS	330	±20%	4.5	7.0	40	140	0.796
LSQNA251818T471K	CB 2518T471K	RoHS	470	±10%	3.5	10	35	120	0.796
LSQNA251818T471M	CB 2518T471M	RoHS	470	±20%	3.5	10	35	120	0.796
LSQNA251818T681K	CB 2518T681K	RoHS	680	±10%	3.0	17	30	90	0.796
LSQNA251818T681M	CB 2518T681M	RoHS	680	±20%	3.0	17	30	90	0.796
LSQNA251818T102K	CB 2518T102K	RoHS	1000	±10%	2.4	24	25	75	0.252
LSQNA251818T102M	CB 2518T102M	RoHS	1000	±20%	2.4	24	25	75	0.252

			N		Self-resonant		Rated curren	t ※)[mA]	
New part number	Old part number (for reference)	EHS	Nominal inductance [μΗ]	Inductance tolerance	frequency [MHz](min.)	DC Resistance $[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current Ide2	Measuring frequency[MHz]
LSQPA251818T1R0M	CB C2518T1R0M	RoHS	1.0	±20%	100	0.08	1,000	1,200	7.96
LSQPA251818T1R5M	CB C2518T1R5M	RoHS	1.5	±20%	80	0.11	950	1,190	7.96
LSQPA251818T2R2M	CB C2518T2R2M	RoHS	2.2	±20%	68	0.13	890	1,100	7.96
LSQPA251818T3R3M	CB C2518T3R3M	RoHS	3.3	±20%	54	0.16	730	1,020	7.96
LSQPA251818T4R7M	CB C2518T4R7M	RoHS	4.7	±20%	41	0.20	680	920	7.96
LSQPA251818T6R8M	CB C2518T6R8M	RoHS	6.8	±20%	38	0.30	550	740	7.96
LSQPA251818T100K	CB C2518T100K	RoHS	10	±10%	30	0.36	480	680	2.52
LSQPA251818T100M	CB C2518T100M	RoHS	10	±20%	30	0.36	480	680	2.52
LSQPA251818T150K	CB C2518T150K	RoHS	15	±10%	23	0.65	350	500	2.52
LSQPA251818T150M	CB C2518T150M	RoHS	15	±20%	23	0.65	350	500	2.52
LSQPA251818T220K	CB C2518T220K	RoHS	22	±10%	19	0.77	320	460	2.52
LSQPA251818T220M	CB C2518T220M	RoHS	22	±20%	19	0.77	320	460	2.52
LSQPA251818T330K	CB C2518T330K	RoHS	33	±10%	15	1.5	270	320	2.52
LSQPA251818T330M	CB C2518T330M	RoHS	33	±20%	15	1.5	270	320	2.52
LSQPA251818T470K	CB C2518T470K	RoHS	47	±10%	12	1.9	240	290	2.52
LSQPA251818T470M	CB C2518T470M	RoHS	47	±20%	12	1.9	240	290	2.52
LSQPA251818T680K	CB C2518T680K	RoHS	68	±10%	9.5	2.8	200	200	2.52
LSQPA251818T680M	CB C2518T680M	RoHS	68	±20%	9.5	2.8	200	200	2.52
LSQPA251818T101K	CB C2518T101K	RoHS	100	±10%	9.0	3.7	160	170	0.796
LSQPA251818T101M	CB C2518T101M	RoHS	100	±20%	9.0	3.7	160	170	0.796
LSQPA251818T151K	CB C2518T151K	RoHS	150	±10%	7.0	6.1	140	130	0.796
LSQPA251818T151M	CB C2518T151M	RoHS	150	±20%	7.0	6.1	140	130	0.796
LSQPA251818T221K	CB C2518T221K	RoHS	220	±10%	5.5	8.4	115	110	0.796
LSQPA251818T221M	CB C2518T221M	RoHS	220	±20%	5.5	8.4	115	110	0.796
LSQPA251818T331K	CB C2518T331K	RoHS	330	±10%	4.5	12.3	100	90	0.796
LSQPA251818T331M	CB C2518T331M	RoHS	330	±20%	4.5	12.3	100	90	0.796
LSQPA251818T471K	CB C2518T471K	RoHS	470	±10%	3.5	22	80	70	0.796
LSQPA251818T471M	CB C2518T471M	RoHS	470	±20%	3.5	22	80	70	0.796
LSQPA251818T681K	CB C2518T681K	RoHS	680	±10%	3.0	28	65	60	0.796
LSQPA251818T681M	CB C2518T681M	RoHS	680	±20%	3.0	28	65	60	0.796

%) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30% (at 20°C) %) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C.(at 20°C) %) The rated current value is following either Idc1 or Idc2, which is the lower one.

> This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

TAIYO YUDEN

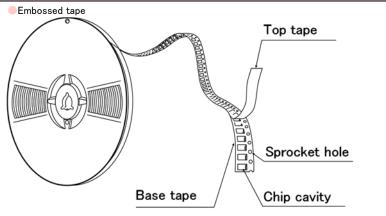
0 3225(1210) type									
	Old next sumber		Nominal inductance		Self-resonant	DC Resistance	Rated curren		Measuring
New part number	Old part number (for reference)	EHS	[µ H]	Inductance tolerance	frequency [MHz](min.)	$[\Omega](\pm 30\%)$	Saturation current Idc1	l emperature rise current Ide2	frequency[MHz]
LSQPA322525T1R0MR	CB C3225T1R0MR	RoHS	1.0	±20%	250	0.055	2,000	1,440	0.1
LSQPA322525T1R5MR	CB C3225T1R5MR	RoHS	1.5	±20%	220	0.060	2,000	1,310	0.1
LSQPA322525T2R2MR	CB C3225T2R2MR	RoHS	2.2	±20%	190	0.080	2,000	1,130	0.1
LSQPA322525T3R3MR	CB C3225T3R3MR	RoHS	3.3	±20%	160	0.095	2,000	1,040	0.1
LSQPA322525T4R7MR	CB C3225T4R7MR	RoHS	4.7	±20%	70	0.100	1,250	1,010	0.1
LSQPA322525T6R8MR	CB C3225T6R8MR	RoHS	6.8	±20%	50	0.120	950	940	0.1
LSQPA322525T100KR	CB C3225T100KR	RoHS	10	±10%	23	0.133	900	900	0.1
LSQPA322525T100MR	CB C3225T100MR	RoHS	10	±20%	23	0.133	900	900	0.1
LSQPA322525T150KR	CB C3225T150KR	RoHS	15	±10%	20	0.195	730	850	0.1
LSQPA322525T150MR	CB C3225T150MR	RoHS	15	±20%	20	0.195	730	850	0.1
LSQPA322525T220KR	CB C3225T220KR	RoHS	22	±10%	17	0.27	620	780	0.1
LSQPA322525T220MR	CB C3225T220MR	RoHS	22	±20%	17	0.27	620	780	0.1
LSQPA322525T330KR	CB C3225T330KR	RoHS	33	±10%	13	0.41	500	570	0.1
LSQPA322525T330MR	CB C3225T330MR	RoHS	33	±20%	13	0.41	500	570	0.1
LSQPA322525T470KR	CB C3225T470KR	RoHS	47	±10%	10	0.67	390	480	0.1
LSQPA322525T470MR	CB C3225T470MR	RoHS	47	±20%	10	0.67	390	480	0.1
LSQPA322525T680KR	CB C3225T680KR	RoHS	68	±10%	8.0	1.0	320	410	0.1
LSQPA322525T680MR	CB C3225T680MR	RoHS	68	±20%	8.0	1.0	320	410	0.1
LSQPA322525T101KR	CB C3225T101KR	RoHS	100	±10%	6.0	1.4	270	340	0.1
LSQPA322525T101MR	CB C3225T101MR	RoHS	100	±20%	6.0	1.4	270	340	0.1
LSQPA322525T221KR	CB C3225T221KR	RoHS	220	±10%	3.0	2.5	190	190	0.1
LSQPA322525T221MR	CB C3225T221MR	RoHS	220	±20%	3.0	2.5	190	190	0.1
LSQPA322525T821KR	CB C3225T821KR	RoHS	820	±10%	1.8	12	110	110	0.1
LSQPA322525T821MR	CB C3225T821MR	RoHS	820	±20%	1.8	12	110	110	0.1
LSQPA322525T102KR	CB C3225T102KR	RoHS	1000	±10%	1.6	13	100	100	0.1
LSQPA322525T102MR	CB C3225T102MR	RoHS	1000	±20%	1.6	13	100	100	0.1

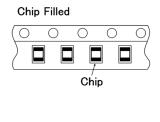
%) The saturation current value(Idc1) is the DC current value having inductance decrease down to 30%.(at 20°C)

%) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40° C.(at 20° C) %) The rated current value is following either Idc1 or Idc2, which is the lower one.

Wire-wound Ferrite Inductors LSQB/LSQC/LSQE/LLQB/LLQC/LLQE/LMQB/LMQC/LMQE/ LBQB/LBQC/LBQE series Wire-wound Ferrite Power Inductors LSQN/LSQPA/LLQN/LLQPA/LMQN/LMQPA/

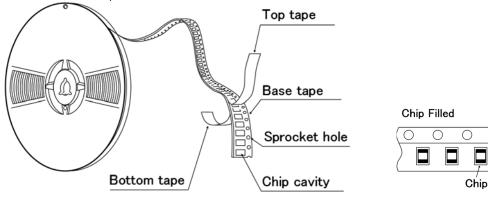
LBQN/LBQPA series


Wire-wound Ferrite Inductors for Signal Lines LSQM/LLQM/LMQM/LBQM series


PACKAGING

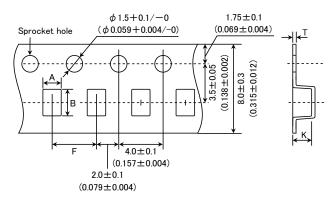
①Minimum Quantity

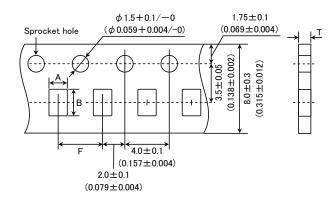
T	Standard Quantity [pcs]						
Туре	Paper Tape	Embossed Tape					
A322525	—	1000					
A321818	—	2000					
A251818	—	2000					
B201616		2000					
A201616	—	2000					
A201212	—	3000					
A201209	4000	_					
A160808	4000	—					
B160808	—	3000					



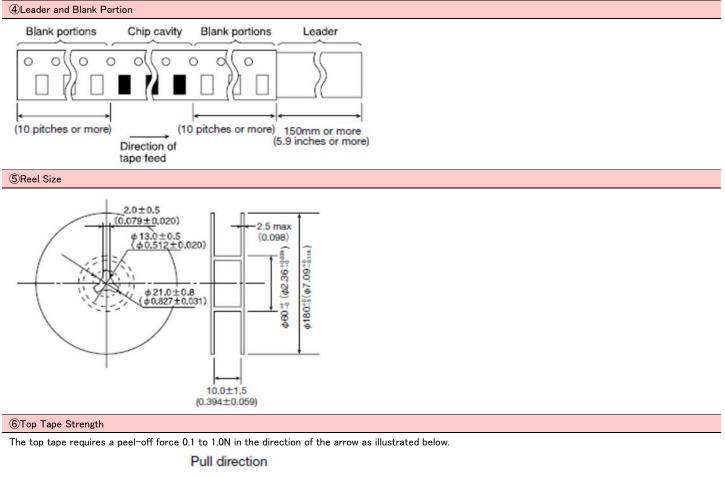
0

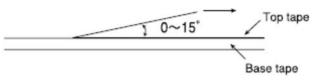
 \cap


Card board carrier tape


3 Taping Dimensions

Embossed Tape (0.315 inches wide)


Туре	Chip	Chip cavity		Tape thickness	
туре	А	В	F	Т	К
B201616	1.75±0.1	2.1 ± 0.1	4.0±0.1	0.3 ± 0.05	1.9max.
B201010	(0.069 ± 0.004)	(0.083 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.075max.)
A322525	2.8±0.1	3.5 ± 0.1	4.0±0.1	0.3 ± 0.05	4.0max.
A322525	(0.110 ± 0.004)	(0.138 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.157max.)
A321818	2.1±0.1	3.5 ± 0.1	4.0±0.1	0.3 ± 0.05	2.2max.
A321818	(0.083 ± 0.004)	(0.138 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.087max.)
4051010	2.15±0.1	2.7±0.1	4.0±0.1	0.3 ± 0.05	2.2max.
A251818	(0.085 ± 0.004)	(0.106 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.087max.)
A201616	1.75±0.1	2.1±0.1	4.0±0.1	0.3 ± 0.05	1.9max.
A201010	(0.069 ± 0.004)	(0.083 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.075max.)
A201212	1.45±0.1	2.25±0.1	4.0±0.1	0.25 ± 0.05	1.45max.
	(0.057 ± 0.004)	(0.089 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.057max.)
D100000	1.1±0.1	1.9±0.1	4.0±0.1	0.25 ± 0.05	1.2max.
B160808	(0.043 ± 0.004)	(0.075 ± 0.004)	(0.157±0.004)	(0.010 ± 0.002)	(0.047max.)
					Unit:mm(inch)


Card board carrier tape (0.315 inches wide)

Туре	Chip	cavity	Insertion pitch	Tape thickness
туре	A	В	F	Т
A201209	1.55 ± 0.1	2.3±0.1	4.0±0.1	1.1max.
A201209	(0.061 ± 0.004)	(0.091 ± 0.004)	(0.157 ± 0.004)	(0.043max.)
A160808	1.0±0.1	1.8±0.1	4.0 ± 0.1	1.1max.
A100808	(0.039 ± 0.004)	(0.071 ± 0.004)	(0.157±0.004)	(0.043max.)
		•	•	

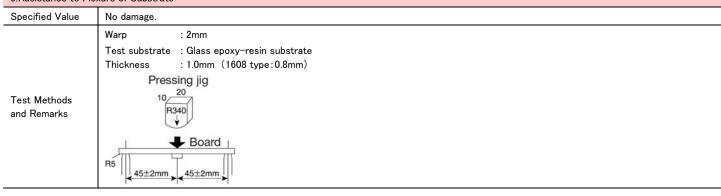
Unit:mm(inch)

Wire-wound Ferrite Inductors LSQB/LSQC/LSQE series
for General Electronic Equipment for Consumer
Wire-wound Ferrite Power Inductors LSQN/LSQPA series
for General Electronic Equipment for Consumer
Wire-wound Ferrite Inductors for Signal Lines LSQM series
for General Electronic Equipment for Consumer
Wire-wound Ferrite Inductors LLQB/LLQC/LLQE series
for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)
Wire-wound Ferrite Inductors for Signal Lines LLQN/LLQPA series
for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)
Wire-wound Ferrite Inductors for Signal Lines LLQM series
for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)

RELIABILITY DATA

1.Operating temper	ature Range		
Specified Value	$-40 \sim +105^{\circ} C (Including self-generated heat)$		
2. Storage Tempera	ature Range(after soldering)		
Specified Value	-40~+85°C		
Test Methods and Remarks	Wire-wound Ferrite Inductors, Wire-wound Ferrite Power Inductors Please refer the term of "7. storage conditions" in precautions.		
3.Rated Current			

Specified Value	Within the specified tolerance		
4.Inductance			
Specified Value	Within the specified tolerance	3	
Test Methods	Measuring equipment	:LCR Mater(HP4285A or its equivalent)	
and Remarks	Measuring frequency	· Specified frequency	


5.Q	
Specified Value	Wire-wound Ferrite Inductors for Signal Lines: Within the specified tolerance
Test Methods and Remarks	Wire-wound Ferrite Inductors for Signal Lines: Measuring equipment : LCR Mater(HP4285A or its equivalent)
	Measuring frequency : Specified frequency

6.DC Resisitance	
Specified Value	Within the specified tolerance
Test Methods and Remarks	Measuring equipment : DC Ohmmeter (HIOKI 3227 or its equivalent)

7.Self-Resonant Fre	7.Self-Resonant Frequency	
Specified Value	Within the specified tolerance	
Test Methods and Remarks	Measuring equipment : Impedance analyzer(HP4291A or its equivalent)	

8.Temperature Cha	aracteristic				
	LSQMB2016				
	LLQMB2016				Inductance change : Within±5%
	LSQBA1608	LSQBA2012	LSQEA2012	LSQNA2012	
	LSQNA2012	LSQBA2016	LSQNA2016	LSQBA2518	
	LSQEA2518	LSQNA2518	LSQCA3225	LSQPA3225	Inductance change : Within±20%
	LLQBA2016	LLQBA2012	LLQEA2012	LLQNA2012	
Specified Value	LLQNA2012	LLQBA2016	LLQNA2016	LLQBA2518	
•	LLQEA2518	LLQNA2518	LLQCA3225	LLQPA3225	
	LSQBB1608	LSQNB1608	LSQCA2016	LSQPA2016	
	LSQCA2518	LSQPA2518	LSQBA3218		Inductance change : Within±25%
	LLQBB1608	LLQNB1608	LLQCA2016	LLQPA2016	
	LLQCA2518	LLQPA2518	LLQBA3218		
	LSQCA2012	LSQPA2012			Industance change (Within + 2504
	LLQCA2012	LLQPA2012			Inductance change : Within±35%
Test Methods and Remarks	Based on the	inductance at 20)℃ and Measur	ed at the ambie	nt of $-40^{\circ}C \sim +85^{\circ}C$.

9.Rasistance to Flexure of Substrate

10.Body Strength	
Specified Value	No damage.
Test Methods and Remarks	Applied force: 10N (1608 type: 5N)Duration: 10sec.

11.Adhesion of terr	minal electrode		
	LB, LBC, LBR, LB	/IF Series	
Specified Value	CB, CBC, CBL, CBMF Series		No abnormality.
	LBM Series		
Test Methods	Applied force	: 10N to X and Y directions(1608 type:5	N to X and Y directions)
and Remarks	Duration	: 5 sec.	
	Test substrate	: Printed board	

12.Resistance to v	vibration				
Specified Value	Wire-wound Ferrite Inductors, Wire-wound Ferrite Power Inductors Inductance change : Within±10% No significant abnormality in appearance. Wire-wound Ferrite Inductors for Signal Lines Inductance change :Within±5% No significant abnormality in appearance.				
	The given sample is soldered to the board and then it is tested depending on the conditions of the following table. Vibration Frequency $10\sim$ 55Hz				
T . M	Total Amplitude	1.5mm (May not exceed acceleration 196m/s2)			
Test Methods and Remarks	Sweeping Method	10Hz to 55Hz to 10Hz for 1min.			
and Remarks	Time	X Y For 2 hours on each X, Y, and Z axis. Z Z Z			
Recovery : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement					

13.Drop test	
Specified Value	-

14.Solderability		
Specified Value	At least 90% of surfa	ce of terminal electrode is covered by new
Test Methods and Remarks	Solder temperature Duration Flux	: 245±5°C : 5±0.5sec : Ethanol solution with 25% of colophony

15.Resistance to so	15.Resistance to soldering		
Specified Value	Wire-wound Ferrite Inductors, Wire-wound Ferrite Power Inductors Inductance change : Within±10% Wire-wound Ferrite Inductors for Signal Lines Inductance change :Within±5%		
Test Methods and Remarks	3 times of reflow oven at 230°C MIN for 40sec. with peak temperature at 260 °C for 5sec. Recovery : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.		

16.Resisitance to se	16.Resisitance to solvent		
Specified Value	-		
Test Methods and Remarks	Solvent temperature Type of solvent Cleaning conditions	: Room temperature : Isopropyl alcohol : 90s. Immersion and cleaning.	

17.Thermal shock					
Specified Value		Inductance change : Within±10% No significant abnormality in appearance.			
Test Methods	The given	e given sample is soldered to the board and then its Inductance is measured after 100cycles of the following conditions.			
and Remarks		Conditions of 1	cycle		
	Step	Temperature (°C)	Duration (min)		
	1	-40 ± 3	30±3		
	2	Room temperature	Within 3		
	3	+85±2	30±3		
	4	Room temperature	Within 3		
	Recover	y : At least 2 hrs o	f recovery under the standard	condition after the test, followed by the measurement within 48 hrs.	

18.Damp heat life test			
Specified Value	Inductance change : Within \pm 10% No significant abnormality in appearance.		
Test Methods and Remarks	Temperature Humidity Duration Recovery	: 60±2°C : 90∼95%RH : 1000 hrs : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.	

19.Loading under damp heat life test		
	Inductance change No significant abn	e : Within±10% ormality in appearance.
Specified Value Test Methods and Remarks	Temperature Humidity Duration Applied current Recovery	: 60±2°C : 90~95%RH : 1000 hrs : Rated current : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.

20.High temperatur	20.High temperature life test		
Specified Value	Wire-wound Ferrite Power Inductors, Wire-wound Ferrite Inductors for Signal Lines : Inductance change : Within±10% No significant abnormality in appearance.		
Test Methods and Remarks	Temperature Duration Recovery	: 85±2°C : 1000 hrs : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.	

21.Loading at high	21.Loading at high temperature life test		
Specified Value	Wire-wound Ferrite Inductors: Inductance change : Within±10% (3225 type:Within±20%) No significant abnormality in appearance.		
Test Methods and Remarks	Temperature Duration Applied current Recovery	: 85±2°C : 1000 hrs : Rated current : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.	

22.Low temperature	22.Low temperature life test		
Specified Value	Inductance change : Within±10% No significant abnormality in appearance.		
Test Methods and Remarks	Temperature Duration Recovery	: -40±2°C : 1000 hrs : At least 2 hrs of recovery under the standard condition after the test, followed by the measurement within 48 hrs.	

23.Standard condition		
Specified Value	Standard test conditions Unless specified, Ambient temperature is 20±15°C and the Relative humidity is 65±20%. If there is any doubt about the test results, further measurement shall be had within the following limits: Ambient Temperature: 20±2°C Relative humidity: 65±5% Inductance value is based on our standard measurement systems.	

Wire-wound Ferrite Inductors LSQB/LSQC/LSQE/LLQB/LLQC/LLQE/LMQB/LMQC/LMQE/ LBQB/LBQC/LBQE series

Wire-wound Ferrite Power Inductors LSQN/LSQPA/LLQN/LLQPA/LMQN/LMQPA/ LBQN/LBQPA series

Wire-wound Ferrite Inductors for Signal Lines LSQM/LLQM/LMQM/LBQM series

PRECAUTIONS

1. Circuit Design	
Precautions	 Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. 2. When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfurous acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environmental conditions. Operating Current (Verification of Rated current) 1. The operating current including inrush current for inductors must always be lower than their rated values. 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. Temperature rise Temperature rise of power choke coil depends on the installation condition in end products. Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design	
Precautions	 Land pattern design Please contact any of our offices for a land pattern, and refer to a recommended land pattern of a right figure or specifications.
Technical considerations	PRECAUTIONS [Recommended Land Patterns] Surface Mounting • Mounting and soldering conditions should be checked beforehand. • Applicable soldering process to those products is reflow soldering only.

3. Consideration	3. Considerations for automatic placement	
Precautions	 Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 	
Technical considerations	1. When installing products, care should be taken not to apply distortion stress as it may deform the products.	

Precautions	 Reflow soldering (Wire-wound Ferrite Inductors, Wire-wound Ferrite Power Inductors) 1. For reflow soldering with either leaded or lead-free solder, the profile specified in "point for controlling" is recommended. Recommended conditions for using a soldering iron 1. Put the soldering iron on the land-pattern. Soldering iron's temperature - Below 350°C Duration-3 seconds or less. The soldering iron should not come in contact with inductor directly.
Technical considerations	 Reflow soldering (Wire-wound Ferrite Inductors, Wire-wound Ferrite Power Inductors) 1. Reflow profile 300 4 5sec max

5. Cleaning	
Precautions	♦Cleaning conditions Washing by supersonic waves shall be avoided.
Technical considerations	◆Cleaning conditions If washed by supersonic waves, the products might be broken.

6. Handling	
Precautions	 Handling Keep the inductors away from all magnets and magnetic objects. Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting inductors, care should be taken not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations Please do not give the inductors any excessive mechanical shocks.
Technical considerations	 Handling There is a case that a characteristic varies with magnetic influence. Breakaway PC boards(splitting along perforations) Planning pattern configurations and the position of products should be carefully performed to minimize stress. Mechanical considerations There is a case to be damaged by a mechanical shock.

Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Storage conditions
Technical considerations	 Storage Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.