Please read this notice before using the TAIYO YUDEN products.

Product Information in this Catalog

Product information in this catalog is as of March 2023. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for general-purpose and standard use in general electronic equipment for consumer (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets, or the equipment approved separately by TAIYO YUDEN.

TAIYO YUDEN has the product series intended for use in the following equipment. Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

Application	Product Series		Quality Grade*3
Application	Equipment ⁺¹	Category (Part Number Code *2)	
Automotive	Automotive Electronic Equipment (POWERTRAIN, SAFETY)	A	1
Automotive	Automotive Electronic Equipment (BODY & CHASSIS, INFOTAINMENT)	С	2
Industrial	Telecommunications Infrastructure and Industrial Equipment	В	2
Medical	Medical Devices classified as GHTF Class C (Japan Class III)	Μ	2
Medical	Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)	L	3
Consumer	General Electronic Equipment	S	3
	Only for Mobile Devices *4	E	4

*Notes:1. Based on the general specifications required for electronic components for such equipment, which are recognized by TAIYO YUDEN, the use of each product series for the equipment is recommended. Please be sure to contact TAIYO YUDEN before using our products for equipment other than those covered by the product series.

2. On each of our part number, the 2nd code from the left is a code indicating the "Category" as shown in the above table. For details, please check the explanatory materials regarding the part numbering system of each of our products.

3. Each product series is assigned a "Quality Grade" from 1 to 4 in order of higher quality. Please do not incorporate a product into any equipment with a higher Quality Grade than the Quality Grade of such product without the prior written consent of TAIYO YUDEN.

4. The applications covered by this product series are limited to mobile devices (smartphone, tablet PC, smartwatch, handheld game console, etc.) among general electronic equipment for consumer. The design, specifications and operating environment, etc. differ from those of the product series for "General Electronic Equipment" (Category: S), so please check the individual product specification sheets for details. The product series for "General Electronic Equipment" (Category: S) can also be used for mobile devices.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

(1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)

(2) Traffic signal equipment

(3) Disaster prevention equipment, crime prevention equipment

- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, data-processing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability. (1) Aerospace equipment (artificial satellite, rocket, etc.)

- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2
- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)

(5) Undersea equipment (submarine repeating equipment, etc.)

(6) Military equipment

(7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

- *Notes:1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
 - 2. Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves conforming to the product specifications specified in the individual product specification sheets, and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement, provided, however, that our products shall be used for general-purpose and standard use in the equipment specified in this catalog or the individual product specification sheets.

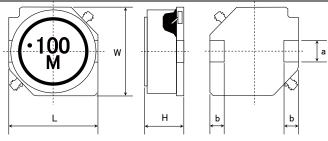
TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.


Wire-wound Ferrite Power Inductors LSRN series for General Electronic Equipment for Consumer

REFLOW * Operating Temp::-40~+125°C (Including self-generated heat) PART NUMBER R 4 5 G 0 S Ν 0 1 0 Μ J (1) (2) 3 **(4)** (5) 6 (7) (8) (9) (1)Series Code (1)(2)(3)(4) Wire-wound Ferrite Power Inductor for General Electronic Equipment for Consumer LSRN (3) T<u>ype</u> (1) Product Group Code Code R Ferrite Wire-wound (Drum-sleeve, pedestal type) L Inductors (2) Category (4) Features, Characteristics Code Quality Grade Code Recommended equipment Ν Standard Power choke General Electronic Equipment S 3 for Consumer 2 Feature 6 Packaging Code Feature Code Packaging J Bottom electrode (Pedestal type) Т Taping ③Dimensions(L×W) ⑦Nominal inductance $Dimensions(L \times W)[mm]$ Code Code Nominal inductance [µH] 101 10.1 × 10.1 (example) 125 12.5 × 12.5 1R0 1.0 100 10 101 100 ④Dimensions(H) Dimensions (H) [mm] ※R=小数点 Code 45 4.5 55 5.5 ⑧Inductance tolerance Inductance tolerance 65 6.5 Code М ±20% 75 7.5 Ν $\pm 30\%$ 5 Operating temperature ⑨Internal code Operating temperature [°C] Code -40~+125 G

Unit:mm(inch)

STANDARD EXTERNAL DIMENSIONS / MINIMUM QUANTITY

Туре	L	W	Н	а	b	Minimum quantity [pcs]	
10145	10.1 ± 0.3	10.1 ± 0.3	4.5±0.35	2.8±0.1	2.0±0.15	2000	
10145	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.177±0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000	
10155	10.1 ± 0.3	10.1 ± 0.3	5.5 ± 0.35	2.8±0.1	2.0±0.15	2000	
10155	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.217±0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000	
10165	10.1 ± 0.3	10.1 ± 0.3	6.5 ± 0.35	2.8±0.1	2.0±0.15	2000	
10105	(0.398 ± 0.012)	(0.398 ± 0.012)	(0.256 ± 0.014)	(0.110 ± 0.004)	(0.079 ± 0.006)	2000	
12555	12.5±0.3	12.5 ± 0.3	5.5 ± 0.35	3.0 ± 0.1	2.0±0.15	2000	
12000	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.217±0.014)	(0.118 ± 0.004)	(0.079 ± 0.006)	2000	
12565	12.5±0.3	12.5 ± 0.3	6.5 ± 0.35	3.0 ± 0.1	2.0±0.15	2000	
12000	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.256 ± 0.014)	(0.118 ± 0.004)	(0.079 ± 0.006)	2000	
12575	12.5±0.3	12.5 ± 0.3	7.5 ± 0.35	3.0 ± 0.1	2.0±0.15	2000	
12070	(0.492 ± 0.012)	(0.492 ± 0.012)	(0.295 ± 0.014)	(0.118±0.004)	(0.079 ± 0.006)	2000	

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

•Applicable soldering process to these products is reflow soldering only.

					С
← A	 	В	 €	A	

Туре	А	В	С
10145	2.5	5.6	3.2
10155	2.5	5.6	3.2
10165	2.5	5.6	3.2
12555	2.5	8.6	3.2
12565	2.5	8.6	3.2
12575	2.5	8.6	3.2
			Unit : mm

101 type does not have the indication of the Manufacturing date code.

PART NUMBER

10145 type								
	Old part number		Nominal inductance		DC Resistance	Rated curre	nt ※)[A]	Measuring frequency
New part number	(for reference)	EHS	[µ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	[kHz]
LSRNJ10145GL1R0NNY	NS 10145T 1R0NNA	RoHS	1.0	±30%	0.0049	12.54	8.90	100
LSRNJ10145GL1R5NNY	NS 10145T 1R5NNA	RoHS	1.5	±30%	0.0060	10.34	7.99	100
LSRNJ10145GL2R2NNY	NS 10145T 2R2NNA	RoHS	2.2	±30%	0.0085	8.91	6.64	100
LSRNJ10145GL3R3NNY	NS 10145T 3R3NNA	RoHS	3.3	±30%	0.0100	7.33	6.10	100
LSRNJ10145GL4R7NNY	NS 10145T 4R7NNA	RoHS	4.7	±30%	0.0144	6.69	5.03	100
LSRNJ10145GL5R6NNY	NS 10145T 5R6NNA	RoHS	5.6	±30%	0.0181	5.85	4.45	100
LSRNJ10145GL6R8NNY	NS 10145T 6R8NNA	RoHS	6.8	±30%	0.0200	5.05	4.22	100
LSRNJ10145GL100MNY	NS 10145T 100MNA	RoHS	10	±20%	0.0248	4.22	3.77	100
LSRNJ10145GL150MNY	NS 10145T 150MNA	RoHS	15	±20%	0.0381	3.44	3.00	100
LSRNJ10145GL220MNY	NS 10145T 220MNA	RoHS	22	±20%	0.0520	2.87	2.55	100
LSRNJ10145GL330MNY	NS 10145T 330MNA	RoHS	33	±20%	0.0815	2.36	2.01	100
LSRNJ10145GL470MNY	NS 10145T 470MNA	RoHS	47	±20%	0.100	1.85	1.80	100
LSRNJ10145GL680MNY	NS 10145T 680MNA	RoHS	68	±20%	0.150	1.66	1.45	100
LSRNJ10145GL101MNY	NS 10145T 101MNA	RoHS	100	±20%	0.200	1.29	1.25	100
LSRNJ10145GL151MNY	NS 10145T 151MNA	RoHS	150	±20%	0.341	1.11	0.94	100
LSRNJ10145GL221MNY	NS 10145T 221MNA	RoHS	220	±20%	0.485	0.91	0.78	100
LSRNJ10145GL331MNY	NS 10145T 331MNA	RoHS	330	±20%	0.700	0.71	0.64	100
LSRNJ10145GL471MNY	NS 10145T 471MNA	RoHS	470	±20%	1.030	0.61	0.52	100
LSRNJ10145GL681MNY	NS 10145T 681MNA	RoHS	680	±20%	1.57	0.50	0.42	100
LSRNJ10145GL102MNY	NS 10145T 102MNA	RoHS	1000	±20%	2.58	0.41	0.32	100
LSRNJ10145GL152MNY	NS 10145T 152MNA	RoHS	1500	±20%	3.70	0.36	0.27	100

10155 type

	Oldanstand		Nominal inductance		DC Resistance	Rated current ※) [A]		Measuring frequency [kHz]
New part number Old part number (for reference)	EHS	[µ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2		
LSRNJ10155GL1R5NNY	NS 10155T 1R5NNA	RoHS	1.5	±30%	0.0060	11.90	8.39	100
LSRNJ10155GL2R2NNY	NS 10155T 2R2NNA	RoHS	2.2	±30%	0.0072	10.00	7.61	100
LSRNJ10155GL3R3NNY	NS 10155T 3R3NNA	RoHS	3.3	±30%	0.0097	8.50	6.49	100
LSRNJ10155GL4R7NNY	NS 10155T 4R7NNA	RoHS	4.7	±30%	0.0112	7.40	6.01	100
LSRNJ10155GL6R8NNY	NS 10155T 6R8NNA	RoHS	6.8	±30%	0.0159	6.00	4.98	100
LSRNJ10155GL100MNY	NS 10155T 100MNA	RoHS	10	±20%	0.0200	4.49	4.40	100
LSRNJ10155GL150MNY	NS 10155T 150MNA	RoHS	15	±20%	0.0284	4.03	3.65	100
LSRN,110155GL220MNY	NS 10155T 220MNA	RoHS	22	+20%	0.0380	3 37	3.12	100

10165 type

	Old and another		New Section 4 Sector 4		DO Destatores	Rated curre	Measuring frequency	
New part number	Old part number (for reference)	EHS	Nominal inductance [µ H]	Inductance tolerance	DC Resistance $[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	[kHz]
LSRNJ10165GL1R5NNY	NS 10165T 1R5NNA	RoHS	1.5	±30%	0.0062	13.60	8.04	100
LSRNJ10165GL2R2NNY	NS 10165T 2R2NNA	RoHS	2.2	±30%	0.0074	10.80	7.32	100
LSRNJ10165GL3R3NNY	NS 10165T 3R3NNA	RoHS	3.3	±30%	0.0086	9.30	6.76	100
LSRNJ10165GL4R7NNY	NS 10165T 4R7NNA	RoHS	4.7	±30%	0.0112	7.70	5.88	100
LSRNJ10165GL6R8NNY	NS 10165T 6R8NNA	RoHS	6.8	±30%	0.0140	6.00	5.22	100
LSRNJ10165GL100MNY	NS 10165T 100MNA	RoHS	10	±20%	0.0174	5.20	4.66	100
LSRNJ10165GL150MNY	NS 10165T 150MNA	RoHS	15	±20%	0.0250	4.50	3.84	100
LSRNJ10165GL220MNY	NS 10165T 220MNA	RoHS	22	±20%	0.0313	3.60	3.41	100

🛑 12555 type

	Old part number		Nominal inductance		DC Resistance	Rated current ※)[A]		Measuring frequency	
New part number	(for reference)	EHS	[µ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	[kHz]	
LSRNJ12555GL6R0NMY	NS 12555T 6R0NN	RoHS	6.0	±30%	0.0140	5.01	5.60	100	
LSRNJ12555GL100MMY	NS 12555T 100MN	RoHS	10	±20%	0.0175	4.73	5.04	100	
LSRNJ12555GL150MMY	NS 12555T 150MN	RoHS	15	±20%	0.0233	3.89	4.18	100	
LSRNJ12555GL220MMY	NS 12555T 220MN	RoHS	22	±20%	0.0297	3.20	3.81	100	
LSRNJ12555GL330MMY	NS 12555T 330MN	RoHS	33	±20%	0.0415	2.64	3.16	100	
LSRNJ12555GL470MMY	NS 12555T 470MN	RoHS	47	±20%	0.0551	2.23	2.70	100	
LSRNJ12555GL680MMY	NS 12555T 680MN	RoHS	68	±20%	0.0797	1.81	2.14	100	
LSRNJ12555GL101MMY	NS 12555T 101MN	RoHS	100	±20%	0.117	1.53	1.86	100	
LSRNJ12555GL151MMY	NS 12555T 151MN	RoHS	150	±20%	0.176	1.22	1.43	100	
LSRNJ12555GL221MMY	NS 12555T 221MN	RoHS	220	±20%	0.270	1.00	1.18	100	
LSRNJ12555GL331MMY	NS 12555T 331MN	RoHS	330	±20%	0.410	0.82	0.96	100	
LSRNJ12555GL471MMY	NS 12555T 471MN	RoHS	470	±20%	0.520	0.68	0.80	100	
LSRNJ12555GL681MMY	NS 12555T 681MN	RoHS	680	±20%	0.760	0.60	0.72	100	
LSRNJ12555GL102MMY	NS 12555T 102MN	RoHS	1000	±20%	1.12	0.47	0.59	100	
LSRNJ12555GL152MMY	NS 12555T 152MN	RoHS	1500	±20%	1.73	0.40	0.44	100	

※) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
 ※) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)
 ※) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

> This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

PART NUMBER

● 12565 type								
	Old part number		Nominal inductance		DC Resistance	Rated curre	Measuring frequency	
New part number	(for reference)	EHS	$[\mu H]$	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	[kHz]
LSRNJ12565GL2R0NMY	NS 12565T 2R0NN	RoHS	2.0	±30%	0.0080	13.91	7.60	100
LSRNJ12565GL4R2NMY	NS 12565T 4R2NN	R₀HS	4.2	±30%	0.0126	10.15	5.91	100
LSRNJ12565GL7R0NMY	NS 12565T 7R0NN	RoHS	7.0	±30%	0.0162	7.93	5.21	100
LSRNJ12565GL100MMY	NS 12565T 100MN	RoHS	10	±20%	0.0199	6.96	4.75	100
LSRNJ12565GL150MMY	NS 12565T 150MN	RoHS	15	±20%	0.0237	5.84	4.33	100
LSRNJ12565GL220MMY	NS 12565T 220MN	RoHS	22	±20%	0.0310	4.87	3.91	100
LSRNJ12565GL330MMY	NS 12565T 330MN	RoHS	33	±20%	0.0390	3.89	3.22	100
LSRNJ12565GL470MMY	NS 12565T 470MN	RoHS	47	±20%	0.0575	3.34	2.78	100
LSRNJ12565GL680MMY	NS 12565T 680MN	RoHS	68	±20%	0.0775	2.78	2.30	100
LSRNJ12565GL101MMY	NS 12565T 101MN	RoHS	100	±20%	0.123	2.23	1.81	100
LSRNJ12565GL151MMY	NS 12565T 151MN	R₀HS	150	±20%	0.173	1.84	1.54	100
LSRNJ12565GL221MMY	NS 12565T 221MN	R₀HS	220	±20%	0.273	1.39	1.18	100

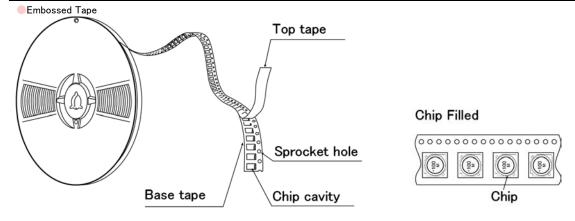
12575 type

• 12373 type			Nominal inductance		DC Resistance	Rated curre	M	
	Old part number (for reference)	EHS	[µ H]	Inductance tolerance	$[\Omega](\pm 20\%)$	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency [kHz]
LSRNJ12575GL1R2NMY	NS 12575T 1R2NN	RoHS	1.2	±30%	0.0058	18.08	9.15	100
LSRNJ12575GL2R7NMY	NS 12575T 2R7NN	RoHS	2.7	±30%	0.0085	13.91	7.69	100
LSRNJ12575GL3R9NMY	NS 12575T 3R9NN	RoHS	3.9	±30%	0.0099	12.52	7.38	100
LSRNJ12575GL5R6NMY	NS 12575T 5R6NN	RoHS	5.6	±30%	0.0116	10.85	6.36	100
LSRNJ12575GL6R8NMY	NS 12575T 6R8NN	RoHS	6.8	±30%	0.0131	10.02	5.84	100
LSRNJ12575GL100MMY	NS 12575T 100MN	RoHS	10	±20%	0.0156	7.65	5.55	100
LSRNJ12575GL150MMY	NS 12575T 150MN	RoHS	15	±20%	0.0184	6.54	5.22	100
LSRNJ12575GL220MMY	NS 12575T 220MN	RoHS	22	±20%	0.0260	5.56	4.05	100
LSRNJ12575GL330MMY	NS 12575T 330MN	RoHS	33	±20%	0.0390	4.45	3.48	100
LSRNJ12575GL470MMY	NS 12575T 470MN	RoHS	47	±20%	0.0515	3.76	2.95	100
LSRNJ12575GL680MMY	NS 12575T 680MN	RoHS	68	±20%	0.0720	2.78	2.49	100
LSRNJ12575GL101MMY	NS 12575T 101MN	RoHS	100	±20%	0.110	2.64	2.01	100
LSRNJ12575GL151MMY	NS 12575T 151MN	RoHS	150	±20%	0.161	2.09	1.51	100
LSRNJ12575GL221MMY	NS 12575T 221MN	RoHS	220	±20%	0.245	1.81	1.35	100

*) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

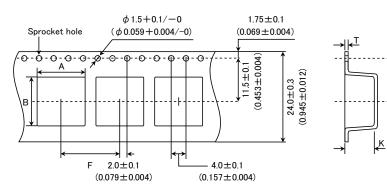
%) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)

※) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

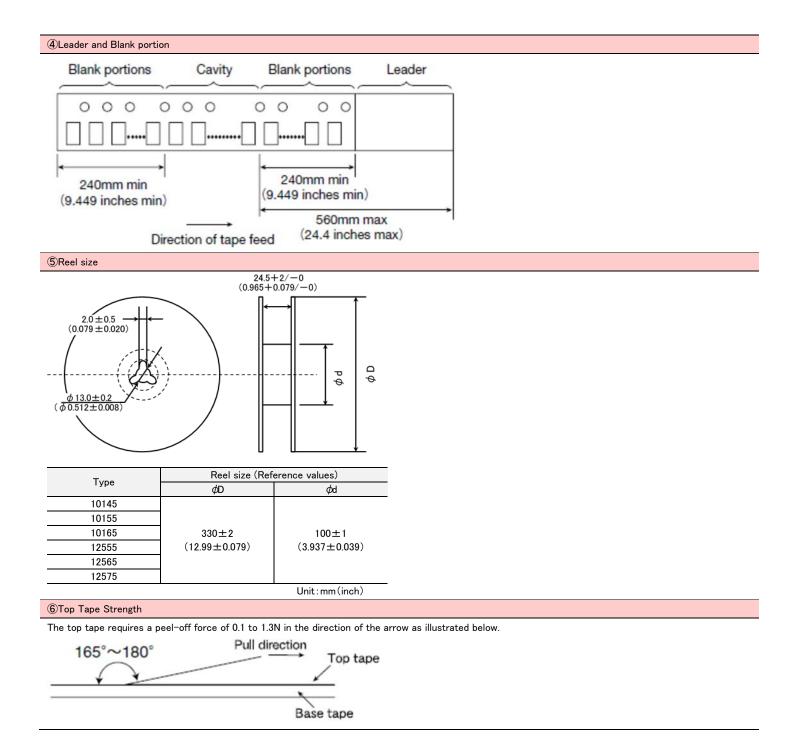


Wire-wound Ferrite Power Inductors LSRN/LCRN/LBRN/LLRN/LMRN series

PACKAGING


①Packing Quantity	()Packing Quantity									
Tuno	Standard Quantity (1reel) [pcs]	Minimum Quantity [pcs]								
Туре	Embossed Tape	Embossed Tape								
10145	500	2000								
10155	500	2000								
10165	500	2000								
12555	500	2000								
12565	500	2000								
12575	500	2000								

②Tape Material


③Taping dimensions

Embossed tape 24mm wide (0.945 inches wide)

T	Chip	cavity	Insertion pitch	Tape th	nickness
Туре	А	В	F	Т	К
10145	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	5.0 ± 0.1
10145	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.197 ± 0.004)
10155	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	6.0±0.1
10155	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.236 ± 0.004)
10165	10.5±0.1	10.5±0.1	16.0±0.1	0.4±0.1	7.0±0.1
10105	(0.413 ± 0.004)	(0.413 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.276 ± 0.004)
10555	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	6.1±0.1
12555	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.240 ± 0.004)
10505	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	7.1±0.1
12565	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.280 ± 0.004)
12575	13.0±0.1	13.0±0.1	16.0±0.1	0.4±0.1	8.0±0.1
12373	(0.512 ± 0.004)	(0.512 ± 0.004)	(0.630 ± 0.004)	(0.016 ± 0.004)	(0.315 ± 0.004)
					Unit:mm(inch)

Unit.min(inch,

Wire-wound Ferrite Power Inductors LSRN series for General Electronic Equipment for Consumer Wire-wound Ferrite Power Inductors LLRN series for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)

RELIABILITY DATA

1. Operating Temperature Range		
Specified Value	$-40 \sim +125^{\circ}C$	
Test Methods and Remarks	Including self-generated heat	

2. Storage Temperature Range			
Specified Value	-40~+85°C		
Test Methods and Remarks	-5 to 40°C for the product with taping.		

3. Rated current	
Specified Value	Within the specified tolerance

4. Inductance		
Specified Value	Within the specified tolera	ince
	Measuring equipment Measuring frequency	: LCR Meter(HP 4285A or equivalent) : 100kHz, 1V

5. DC Resistance		
Specified Value	Within the specified tolerar	nce
Test Methods and Remarks	Measuring equipment	: DC ohmmeter(HIOKI 3227 or equivalent)

6. Self resonance frequency		
Specified Value	-	

7. Temperature characteristic				
Specified Value	Inductance change : Within $\pm 15\%$			
Test Methods and Remarks	With reference	rement of inductance shall be taken at temperature range within $-40^{\circ}C \sim +125^{\circ}C$. afference to inductance value at $+20^{\circ}C$., change rate shall be calculated. a of maximum inductance deviation in step 1 to 5		

8. Resistance to fle	xure of substrate			
Specified Value	No damage			
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. As illustrated below, apply force in the direction of the arrow indicating until deflection of the test board reaches to 2 mm. Test board size : $100 \times 40 \times 1.0$ Test board material : Glass epoxy-resin Solder cream thickness : 0.15 mm Land dimension Type A B C 101 2.5 5.6 3.2 125 2.5 8.6 3.2			
9. Insulation resista	nce : between wires			
Specified Value	-			
10. Insulation resist	ance : between wire and core			
Specified Value	-			
11. Withstanding vo	tage : between wire and core			
Specified Value	_			
12. Adhesion of terr	ninal electrode			
Specified Value	Shall not come off PC board			
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. Applied force : 10N to X and Y directions. Duration : 5s. Solder cream thickness : 0.15mm 10 N, 5 s			
13. Resistance to v				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods and Remarks	The test samples shall be soldered to the test board by the reflow. Then it shall be submitted to below test conditions. Frequency Range 10~55Hz Total Amplitude 1.5mm (May not exceed acceleration 196m/s²) Sweeping Method 10Hz to 55Hz to 10Hz for 1min. Time X For 2 hours on each X, Y, and Z axis.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Ζ

Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

14. Solderability				
Specified Value	At least 90% of surface of terminal electrode is covered by new solder.			
	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux : Ethanol solution containing rosin 25%.			
Test Methods and Remarks	Solder Temperature	245±5°C		
Remarks	Time	5±1.0 sec.		
	XImmersion depth : All sides of mounting terminal shall be immersed.			

15. Resistance to soldering heat			
Specified Value	Inductance change : Within \pm 10% No significant abnormality in appearance.		
Test Methods and Remarks	The test sample shall be exposed to reflow oven at 230±5°C for 40 seconds, with peak temperature at 260±5°C for 5 seconds, 2 times. Test board material : Glass epoxy-resin Test board thickness : 1.0mm		

16. Thermal shock				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified t time by step 1 to step 4 as shown in below table in sequence. The temperature cycle shall be repeated 100 cycle.			
	Step	Temperature (°C)	Duration (min)	
Test Methods and Remarks	1	-40 ± 3	30±3	
	2	Room temperature	Within 3	
	3	+85±2	30±3	
	4	Room temperature	Within 3	
	Recover	y : At least 2hrs of recovery	under the standard conditio	n after the test, followed by the measurement within 48hrs.

17. Damp heat				
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.			
Test Methods and Remarks	Temperature	60±2°C		
and Remarks	Humidity	90~95%RH		
	Time	500+24/-0 hour		
	Recovery : At leas	st 2hrs of recovery under	the standard condition after the test, followed by the measurement within 48hrs.	

18. Loading under	damp heat		
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
			by the reflow. set at specified temperature and humidity and applied the rated current continuously
Test Methods and Remarks	Temperature	60±2°C	
and Remarks	Humidity	90~95%RH	
	Applied current	Rated current	
	Time	500+24/-0 hour	
	Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.		
19. Low temperatu	re life test		
Specified Value	Inductance change : Within \pm 10% No significant abnormality in appearance.		
Test Methods	The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown in below table.		
and Remarks	Temperature	-40±2°C	
	Time	500+24/-0 hour	
	Recovery : At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.		

 20. High temperature life test

 Specified Value

21. Loading at high temperature life test			
Specified Value	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
	The test samples sh	all be soldered to the test	board by the reflow soldering.
Test Methods	Temperature	85±2°C	
and Remarks	Applied current	Rated current	
	Time	500+24/-0 hour	
	Recovery : At leas	st 2hrs of recovery under	the standard condition after the test, followed by the measurement within 48hrs.

22. Standard condition		
Specified Value	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity. When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of 20±2°C of temperature, 65±5% relative humidity. Inductance is in accordance with our measured value.	

Wire-wound Ferrite Power Inductors LSXN/LSXP series

for General Electronic Equipment for Consumer

Wire-wound Ferrite Power Inductors LSXBH10050 for General Electronic Equipment for Consumer

Wire-wound Ferrite Power Inductors LSRN series for General Electronic Equipment for Consumer

Wire-wound Ferrite Power Inductors LLXN/LLXP series

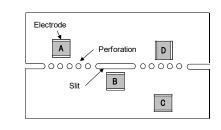
for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)

Wire-wound Ferrite Power Inductors LLXBH10050

for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)

Wire-wound Ferrite Power Inductors LLRN series

for Medical Devices classified as GHTF Classes A or B (Japan Classes I or II)


PRECAUTIONS

	♦Verification of operating environment, electrical rating and performance
	 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe soci ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations ar should be clearly differentiated from components used in general purpose applications.
Precautions	 When inductors are used in places where dew condensation develops and/or where corrosive gas such as hydrogen sulfide, sulfuror acid, or chlorine exists in the air, characteristic deterioration may occur. Please do not use inductors under such environment conditions.
Precautions	♦ Operating Current (Verification of Rated current)
	1. The operating current including inrush current for inductors must always be lower than their rated values.
	2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.
	♦Temperature rise
	Temperature rise of power choke coil depends on the installation condition in end products.
	Make sure that temperature rise of power choke coils in actual end products is within the specified temperature range.

2. PCB Design			
Precautions	 Land pattern design Please refer to a recommended land pattern. There is stress, which has been caused by distortion of a PCB, to the inductor. (LSXN/LSXP/LLXN/LLXP) Please consider the arrangement of parts on a PCB. (LSXN/LSXP/LLXN/LLXP) 		
Technical considerations	 Land pattern design Surface Mounting Mounting and soldering conditions should be checked beforehand. Applicable soldering process to this products is reflow soldering only. Please use the recommended land pattern shown as below. Electrical characteristics and the mounting ability of the product are being considered in the recommended land pattern. If a PCB is designed with other dimensions, defective soldering and stress to a product may occur due to misalignment. The performance of the product may not be brought out. If an adopted land pattern is different from the recommended land pattern, stress to the product will increase. It may cause cracks or defective electrical characteristics of the product. Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. (LSXN/LSXP/LLXN/LLXP) As coefficients of thermal expansion between an inductor and a PCB differs, cracks may occur on a ferrite core when thermal stress is applied to them after mounting an inductor. (Please refer to the drawings below.) Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. (LSXN/LSXP/LLXN/LLXP) Image: Clack on ferrite core product electrode 		

5. SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. (LSXN/LSXP/LLXN/LLXP)

A product tends to undergo stress in order "A>C>B \equiv D". Please consider the layouts of a product to minimize any stresses.

3. Considerations	s for automatic placement		
Precautions	 Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 		
	 Adjustment of mounting machine When installing products, care should be taken not to apply distortion stress as it may deform the products. Stress may be applied to a product with a warp or a twist in handling of the product. Please conduct validation completely before studying adoption of this product and please judge the pros and cons of adoption of this product with taking on responsibility. (LSXN/LSXP/LLXN/LLXP) 		
Technical considerations	<wrap> <twist></twist></wrap>		

4. Soldering			
Precautions	 Reflow soldering Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. The product shall be used reflow soldering only. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. Lead free soldering When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. Recommended conditions for using a soldering iron(Repair) Put the soldering iron on the land-pattern. Soldering iron's temperature – Below 350°C Duration – 3 seconds or less The soldering iron should not directly touch the inductor. 		
Technical considerations	 Reflow soldering If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) <u>0</u> <u>0</u>		

5. Cleaning		
Precautions	 ♦ Cleaning conditions 1. Washing by supersonic waves shall be avoided. 	
Technical considerations	 Cleaning conditions 1. If washed by supersonic waves, the products might be broken. 	

6. Handling	
Precautions	 Handling Keep the product away from all magnets and magnetic objects. Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. Mechanical considerations Please do not give the product any excessive mechanical shocks. Please do not add any shock and power to a product in transportation. Pick-up pressure Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. Packing Please avoid accumulation of a packing box as much as possible.
Technical considerations	 Handling There is a case that a characteristic varies with magnetic influence. Breakaway PC boards (splitting along perforations) The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. Mechanical considerations There is a case to be damaged by a mechanical shock. There is a case to be broken by the handling in transportation. Pick-up pressure Damage and a characteristic can vary with an excessive shock or stress. Packing If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage condit	tions
Precautions	 Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Storage conditions Ambient temperature : -5~40°C Humidity : Below 70% RH The recommended ambient temperature is below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage.
Technical considerations	 Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

