Wire-wound Metal Power Inductors MCOIL[™] LBEN series for Telecommunications Infrastructure and Industrial Equipment

Code in front of Series have been extracted from Part number, which describes the segment of products, such as kinds and characteristics.

REFLOW

■PART NUMBER

* Operating Temp.:-40 \sim +125 $^{\circ}$ C (Including self-generated heat)

1)Series

9-511-55		
Code		
(1)(2)(3)(4)		
LBEN	Wire-wound Metal Power Inductor for Telecommunications Infrastructure and Industrial Equipment	

(1) Product Group

Code	
L	Inductors

(2) Category

Code	Recommended equipment	Quality Grade
В	Telecommunications Infrastructure and Industrial Equipment	2

(3) Type Code

Code	
Е	Metal Wire-wound (High filling type)

(4) Features, Characteristics

<u> </u>	*
Code	
N	Standard Power choke

2Features

Code	Feature
Α	5-surface electrode (Ag-resin × Sn-plate)

③Dimensions (L×W)

Code	Dimensions (L × W) [mm]
2016	2.0 × 1.6
2520	2.5 × 2.0

4Dimensions (T)

() Billion citation (17)		
Code	Dimensions (T) [mm]	
MK	1.2	

5Packaging

Code	Packaging
Т	Taping

6 Nominal inductance

© Normal made care		
Code (example)	Nominal inductance[μH]	
R47	0.47	
1R0	1.0	
4R7	4.7	

*R=Decimal point

7 Inductance tolerance

Code	Inductance tolerance
М	±20%

8Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

- Mounting and soldering conditions should be checked beforehand.
- •Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С
2016	0.8	0.8	1.8
2520	0.85	1.2	2.2

Unit:mm

	Туре	L	W	Т	е	Standard quantity[pcs] Taping		
-	2016MK			1.2 max (0.047 max)	0.5±0.2 (0.020±0.008)	3000		
-	2520MK	2.5 ± 0.2 (0.098 \pm 0.008)	2.0±0.2 (0.079±0.008)	1.2 max (0.047 max)	0.6±0.3 (0.020±0.012)	3000		

Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

PART NUMBER

• All the Wire-wound Metal Power Inductors of the catalog lineup are RoHS compliant.

Notes)

- The exchange of individual specifications is necessary depending on your application and/or circuit condition. Please contact TAIYO YUDEN's official sales channel.
- The products are for Telecommunications infrastructure and Industrial equipment.

Please consult with TAIYO YUDEN's official sales channel for the details of the product specifications, etc.,

and please review and approve the product specifications before ordering.

2016MK type [Thickness: 1.2mm max.]

L TIMOTATOGO : TIETHINI IMAXI.								
Old part number (for reference)	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rate			
					Saturation current Idc1	Temperature rise current① Idc2	Temperature rise current② Idc2	Measuring frequency [MHz]
MEMK2016TR24MGNK8	0.24	±20%	-	0.018	6,800	3,500	5,500	1
MEMK2016TR33MGNK8	0.33	±20%	-	0.022	5,400	3,000	4,900	1
MEMK2016TR47MGNK8	0.47	±20%	-	0.025	4,800	2,900	4,700	1
MEMK2016T1R0MGNK8	1.0	±20%	_	0.045	3,100	2,000	3,200	1
MEMK2016T2R2MGNK8	2.2	±20%	_	0.120	2,200	1,100	1,800	1
	Old part number (for reference) MEMK2016TR24MGNK8 MEMK2016TR33MGNK8 MEMK2016TR47MGNK8 MEMK2016TR0MGNK8	Old part number (for reference) Nominal inductance [μ H] MEMK2016TR24MGNK8 0.24 MEMK2016TR33MGNK8 0.33 MEMK2016TR47MGNK8 0.47 MEMK2016T1R0MGNK8 1.0	Old part number (for reference) Nominal inductance [μ H] Inductance tolerance MEMK2016TR24MGNK8 0.24 ±20% MEMK2016TR33MGNK8 0.33 ±20% MEMK2016TR47MGNK8 0.47 ±20% MEMK2016T1R0MGNK8 1.0 ±20%	Nominal inductance (for reference) Nominal inductance (fu H) Inductance tolerance [μH] Enductance (MHz] (min.)			Nominal inductance (for reference) Nominal inductance (full Hz) Inductance (full Hz) Inductance (full Hz) Inductance (full Hz) Inductance (full Hz) (min.) Inductance (full	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2520MK type [Thickness: 1.2mm max.]

	Old part number (for reference)	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rate			
New part number						Saturation current Idc1	Temperature rise current① Idc2	Temperature rise current② Idc2	Measuring frequency [MHz]
LBENA2520MKTR15M0NK	MEMK2520TR15MGNK8	0.15	±20%	-	0.009	10,200	4,900	6,700	1
LBENA2520MKTR33M0NK	MEMK2520TR33MGNK8	0.33	±20%	-	0.015	7,000	4,000	5,600	1
LBENA2520MKTR47M0NK	MEMK2520TR47MGNK8	0.47	±20%	-	0.020	5,900	3,700	5,000	1
LBENA2520MKT1R0M0NK	MEMK2520T1R0MGNK8	1.0	±20%	-	0.042	4,400	2,400	3,200	1
LBENA2520MKT1R5M0NK	MEMK2520T1R5MGNK8	1.5	±20%	-	0.057	3,300	2,100	2,800	1
LBENA2520MKT2R2M0NK	MEMK2520T2R2MGNK8	2.2	±20%	-	0.077	3,000	1,700	2,400	1
LBENA2520MKT3R3M0NK	MEMK2520T3R3MGNK8	3.3	±20%	-	0.131	2,300	1,300	1,800	1
LBENA2520MKT4R7M0NK	MEMK2520T4R7MGNK8	4.7	±20%	-	0.185	2,100	1,100	1,500	1

- *X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- *\times\) The temperature rise current value (Idc2)\(\hat{1}\) is the DC current value having temperature increase up to 20°C. (at 20°C)
- *\times The temperature rise current value (Idc2)\(\bar{2}\) is the DC current value having temperature increase up to 40°C. (at 20°C)
- X) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value. Material:FR4
- ※) Idc2 Measurement board data

Board dimensions: $100 \times 50 \times 1.6t$ mm Pattern dimensions: 43×59.2 mm Pattern thickness: 50 μ m

■Derating of Rated Current

LBEN series

Derating of current is necessary for LBEN series depending on ambient temperature. Please refer to the chart shown below for appropriate derating of current.

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .