TAIYO YUDEN

Introduction of Temperature/DC Bias Model and User-specified Temp./Bias Model

Multilayer Ceramic Capacitors (High dielectric type) Power Inductors

Introduction

We are providing models that reflect the temperature and DC bias dependencies of capacitors and inductors!

Temperature/DC Bias Model

Available for various temperature and DC bias

User-specified Temp./Bias Model

You can specify the temperature and DC bias corresponding to your environment when downloading the model.

Model variations and features

	Temperature/DC Bias Model	New User-specified Temp./Bias Model	Standard Model
Images	$C = f(V_{\text{DC}}, T)$ $L = f(I_{\text{DC}}, T)$	@85degC, 2V @40degC, 0.2A @-55degC, 1V etc.	25degC, 0V only
Temperature	Changeable (specify on schematic)	Fixed (specify@DL) ex55, 25, 85°C	Fixed (25degC only)
DC Bias	Automatically following to applied DC bias	Fixed (specify@DL) ex. 0, 2, 4V/A	Fixed (0V/A only)
Simulation Accuracy/ Speed	High accuracy/ Relatively slow	Normal accuracy/ Fast	Normal accuracy/ Fast

We are providing 2 types of adaptive models to temperature and dc bias dependencies of high dielectric ceramic capacitors and power inductors.

Download page

https://ds.yuden.co.jp/TYCOMPAS/or/searcherMain

You can download models by following the download link at description page of each product.

Download page of Libraries and manuals

If you would like to download models of our components all at once, please visit the library download page below.

https://www.yuden.co.jp/or/product/support/com_lib/

Also, how-to-install-and-use manuals for Temperature/DC bias model are available from links below.

PSpice

https://www.yuden.co.jp/productdata/com_lib/en/PSM_E.pdf

LTspice

https://www.yuden.co.jp/productdata/com_lib/en/LTM_E.pdf

HSPICE

https://www.yuden.co.jp/productdata/com_lib/en/HSM_E.pdf

Spectre

https://www.yuden.co.jp/productdata/com_lib/en/SPM_E.pdf

More Informations of Temperature/DC bias Model

Temperature/DC Bias Characteristics of Capacitors

Multilayer Ceramic Capacitor 47uF

Multilayer ceramic capacitors composed of high dielectric materials are known to vary their characteristics by temperature and/or DC bias voltage.

Therefore, temperature-DC-bias-dependent models are needed to perform simulations more precisely in condition that the ambient temperature and/or DC bias voltage varies.

Temperature/DC bias model and measurement data

Multilayer Ceramic Capacitor 47uF

Frequency Characteristics

By using Temperature/DC bias model, you can perform simulations well fitting to actual data dependent on the ambient temperature and DC bias current.

That is first achieved by Temperature/DC bias model, but not realized by the legend model.

Simulation example (DC-DC converter)

Multilayer Ceramic Capacitor 47uF

Above figures are ripple waveforms of output capacitor when using Temperature/DC bias model in DC-DC converter circuit. You can find that the waveform of Temperature/DC bias model is more actual as it reflects the reduction of capacitance according to DC bias voltage different from the legend model.

Temperature/DC Bias Characteristics of Inductors

Ferrite Power Inductor 1uH

Power Inductors composed of ferrite or metal materials are known to vary their characteristics by temperature and/or DC bias current.

Therefore, temperature-DC-bias-dependent models are needed to perform simulations more precisely in condition that the ambient temperature and/or DC bias current varies.

Temperature/DC bias model and measurement data

Ferrite Power Inductor 1uH

By using Temperature/DC bias model, you can perform simulations well fitting to actual data dependent on the ambient temperature and DC bias current.

That is first achieved by Temperature/DC bias model, but not realized by the legend model.

Simulation example (DC-DC converter)

Ferrite Power Inductor 1uH

Above figures are inductor waveforms when using Temperature/DC bias model in DC-DC converter circuit. You can find that the waveform of Temperature/DC bias model is more actual as it reflects the reduction of inductance according to DC bias current different from the legend model.